
Introduction to Python

Author: Nitesh Kumar

Email: nitesh.kumar@ddn.upes.ac.in

Python Basics from Scratch

Table of Contents
1. Introduction to Python
2. Variables and Data Types
3. Basic Operators
4. Control Structures
5. Functions
6. Lists and Tuples
7. Dictionaries
8. Conclusion

1. Introduction to Python
Python is a high-level, interpreted programming language known for its readability and simplicity.
It is widely used in various fields, including web development, data analysis, artificial intelligence,
and more.

Example Code

print("Hello, World!")

Hello, World!

Challenge
1. Print your name.
2. Print the result of 2 + 3.
3. Print a string that includes your favorite hobby.
4. Print the current year.
5. Print a simple math operation (e.g., 10 * 5).

a = 'Hello'

b = 'World !'

In [70]:

In [9]:

print(a + b)

HelloWorld !

2. Variables and Data Types
Variables are used to store data values. Python has various data types, including integers, floats,
strings, and booleans.

Example Code

Integer

age = 25

Float

height = 5.9

String

name = "Alice"

Boolean

is_student = True

print(age, height, name, is_student)

25 5.9 Alice True

Challenge
1. Create a variable for your age and print it.
2. Create a variable for your height and print it.
3. Create a variable for your favorite color and print it.
4. Create a boolean variable indicating if you like Python.
5. Print all the variables you created.

3. Basic Operators
Operators are used to perform operations on variables and values. Python supports arithmetic,
comparison, and logical operators.

Example Code

a = 10

b = 5

Arithmetic Operators

sum_result = a + b

difference = a - b

product = a * b

quotient = a / b

In []:

In [76]:

In []:

In []:

In [82]:

remainder = a % b

exponent = a ** b

print(sum_result, difference, product, quotient, remainder, exponent)

15 5 50 2.0 0 100000

Challenge
1. Calculate the remainder of 10 divided by 3.
2. Find the power of 2 raised to 5.
3. Subtract 15 from 30 and print the result.
4. Multiply 7 by 6 and print the result.
5. Divide 100 by 4 and print the result.

calculating the volume and total surface area of a cylinder

r = 2.3

h = 5.5

pi = 3.1415

V = pi*r*r*h

A = 2*pi*r*(r+h)

print(A)

print(V)

112.71701999999999

91.40194249999999

3.1 USER INPUT
If you want to provide user input after running your code

r = input('Enter the radius of the cylinder=') #Automatically assume the str

r = float(r)

h = input('Enter the radius of the cylinder=') #Automatically assume the str

h = float(h)

pi = 3.1415

V = pi*r*r*h

A = 2*pi*r*(r+h)

print('\n')

print('Total surface area:', A)

print('Total Volume:', V)

r = input('Enter the radius of the cylinder=') #Automatically assume the str

r = float(r)

h = input('Enter the radius of the cylinder=') #Automatically assume the str

h = float(h)

pi = 3.1415

V = pi*r*r*h

A = 2*pi*r*(r+h)

print('\n') # ?

In [85]:

In [11]:

print('Total surface area:', A)

print('Total Volume:', V)

Total surface area: 376.98

Total Volume: 452.376

print option (Using 'f' string)
V = pi*r*r*h

print(f'The volume of the cylinder is {V} cm**3')

In the 'f' string we can choose the dtype and format of the output value
print(f'{V:0.2f}) means the floating point till 2 decimal points
print(f'{V:0f}) means the integer values
print(f'{V:.2e}) means the scientific notations and the first Mantissa is float till 2

decimal points

V = pi*r*r*h

print(f'The volume of the cylinder is {V:.0f} cm**3 \n')

print(f'The volume of the cylinder is {V:.2f} cm**3 \n')

print(f'The volume of the cylinder is {V:.2e} cm**3 \n')

The volume of the cylinder is 343523 cm**3

The volume of the cylinder is 343523.03 cm**3

The volume of the cylinder is 3.44e+05 cm**3

4. Control Structures and loops
Control structures allow you to control the flow of your program. This includes conditional
statements and loops.

Example Code

If-Else Statement

number = 10

if number > 0:

 print("Positive number")

else:

 print("Negative number")

For Loop

for i in range(5):

 print(i)

In []:

In [92]:

In []:

In [4]:

Positive number

0

1

2

3

4

Challenge
1. Write a program that checks if a number is even or odd.
2. Create a loop that prints numbers from 1 to 10.
3. Write a program that prints "Hello" 5 times.
4. Create a program that prints all numbers from 1 to 20 that are divisible by 3.
5. Write a program that prints the first 5 squares (1, 4, 9, 16, 25).

for i in range(11):

 if i % 2 == 0:

 print(i, 'is even')

 else:

 print(i, 'is odd')

0 is even

1 is odd

2 is even

3 is odd

4 is even

5 is odd

6 is even

7 is odd

8 is even

9 is odd

10 is even

4.1 while loop

i = 1

while i < 6:

 print(i)

 i += 1

1

2

3

4

5

5. Functions
Functions are blocks of code that perform a specific task and can be reused.

Example Code

In [8]:

In []:

In [4]:

In []:

In []:

def greet(name):

 return f"Hello, {name}!"

print(greet("Alice"))

Hello, Alice!

def sum(a, b):

 c = a + b

 return c

z = sum(5, 8)

print(z)

13

def is_prime(num):

 # code

 # check the divisibility by all numbers between 1 and num-1

 # if the num is not divisible by any number between 1 and num -1; it is a prime

 return result

Challenge
1. Write a function that takes two numbers and returns their sum.
2. Create a function that checks if a number is prime.
3. Write a function that returns the factorial of a number.
4. Create a function that takes a string and returns its length.
5. Write a function that converts Celsius to Fahrenheit.

6. Lists and Tuples
Lists and tuples are used to store multiple items in a single variable. Lists are mutable, while
tuples are immutable.

Example Code

List

fruits = ["apple", "banana", "cherry"]

fruits.append("orange")

print(fruits)

Tuple

colors = ("red", "green", "blue")

print(colors)

['apple', 'banana', 'cherry', 'orange']

('red', 'green', 'blue')

In [133…

In [17]:

In []:

In []:

In []:

In []:

In []:

In [139…

Python code to test that

tuples are immutable

tuple1 = (0, 1, 2, 3)

tuple1[0] = 4

print(tuple1)

TypeError Traceback (most recent call last)

Cell In[3], line 5

 1 # Python code to test that

 2 # tuples are immutable

 4 tuple1 = (0, 1, 2, 3)

----> 5 tuple1[0] = 4

 6 print(tuple1)

TypeError: 'tuple' object does not support item assignment

Python code to test that

strings are immutable

message = "Welcome to GeeksforGeeks"

message[0] = 'p'

print(message)

TypeError Traceback (most recent call last)

Cell In[5], line 5

 1 # Python code to test that

 2 # strings are immutable

 4 message = "Welcome to GeeksforGeeks"

----> 5 message[0] = 'p'

 6 print(message)

TypeError: 'str' object does not support item assignment

Challenge
1. Create a list of your favorite movies and print it.
2. Add a new movie to the list and print the updated list.
3. Create a tuple of your favorite books and print it.
4. Try to change an item in the tuple and see what happens.
5. Write a program that prints each fruit in the list on a new line.

7. Dictionaries
Dictionaries are used to store data values in key:value pairs.

Example Code

Dictionary

Challenge
1. Create a dictionary to store your favorite book's title, author, and year published.

In [3]:

In [5]:

In []:

2. Print the author's name from the dictionary.
3. Add a new key-value pair for the genre of the book.
4. Write a program that prints all keys in the dictionary.
5. Write a program that prints all values in the dictionary.

person = {

 "name": "Alice",

 "age": 25,

 "city": "New York"

}

print(person["name"])

Alice

Examples for reference
These problems will help you practice Python programming concepts such as if-else , for
loop , while loop , lists , tuples , dictionaries , etc. Each problem is related to real-
world scientific fields like physics, mathematics, chemistry, and geology.

1. Simple Temperature Converter (Chemistry)
Concepts: if-else
Write a Python program that converts temperature between Celsius, Fahrenheit, and Kelvin,
based on user input.
Example: Input the temperature in Celsius and convert it to Fahrenheit and Kelvin.

2. Gravitational Force Calculator (Physics)
Concepts: input , for loop
Create a program that calculates the gravitational force between two masses using Newton's
law of gravitation.

Formula:

Example: Input two masses and the distance between them.

3. Prime Number Checker (Mathematics)
Concepts: if-else , for loop
Write a program that checks if a number is prime.
Example: Input a number and the program should display whether it is prime or not.

4. Fibonacci Sequence Generator (Mathematics)
Concepts: while loop , lists
Write a Python program to generate the first n numbers in the Fibonacci sequence.
Example: Input the number of terms, and output the sequence.

5. pH Value Classifier (Chemistry)

In [5]:

F = G⋅m1⋅m2
r2

Concepts: if-else
Create a program that takes the pH value of a solution as input and classifies it as acidic,
neutral, or basic.
Example: Input a pH value and the program classifies it as acidic (<7), neutral (=7), or basic
(>7).

6. Rock Classification (Geology)
Concepts: if-else , lists , tuples
Create a program that classifies rocks based on their types (igneous, sedimentary,
metamorphic). Store examples of rocks in lists/tuples for each type.
Example: Input a rock name, and the program outputs its classification.

7. Projectile Motion Calculator (Physics)
Concepts: while loop , math library
Write a program that calculates the range and maximum height of a projectile given initial
velocity and launch angle.
Use the equations:

Example: Input initial velocity and angle, output range and height.

8. Matrix Multiplication (Mathematics)
Concepts: nested loops , lists
Write a Python program to perform matrix multiplication.
Example: Input two matrices and output their product.

9. Periodic Table Lookup (Chemistry)
Concepts: dictionaries
Create a program that stores atomic numbers and symbols of the first 20 elements of the
periodic table in a dictionary. Allow the user to look up an element by its atomic number or
symbol.
Example: Input an atomic number or symbol, and output the element's name.

10. Earthquake Magnitude Classifier (Geology)
Concepts: if-else
Write a program that classifies earthquakes based on the Richter scale magnitude.
Example: Input a magnitude and classify the earthquake (e.g., Minor: <4.0, Moderate: 5.0-5.9,
Major: ≥7.0).

11. Factorial Calculator (Mathematics)
Concepts: for loop

R = v2 sin(2θ)
g

H = v2 sin2(θ)
2g

Write a program that calculates the factorial of a given number.
Example: Input a number, and the program returns its factorial.

12. Simulating Radioactive Decay (Physics)
Concepts: while loop
Write a program that simulates radioactive decay using a simple decay law:

Example: Input initial number of atoms, decay constant, and time, then output the remaining
number of atoms.

13. Distance Between Two Points (Mathematics)
Concepts: tuples , math library
Write a program that calculates the distance between two points in a 2D plane.
Use the distance formula:

Example: Input two points as tuples, and output the distance.

14. Planetary Weight Calculator (Physics)
Concepts: if-else , lists
Create a program that calculates a person’s weight on different planets using their weight on
Earth and the gravitational factor for each planet.
Example: Input weight on Earth, choose a planet, and the program returns the weight on that
planet.

15. Unit Converter (General)
Concepts: if-else , dictionaries
Write a program that converts units (e.g., kilometers to miles, grams to ounces, Celsius to
Fahrenheit).
Example: Input a value and its unit, and the program converts it to the desired unit.

1. Simple Temperature Converter (Chemistry)

Question:

Write a Python program that converts temperature from Celsius to both Fahrenheit and Kelvin.
Use the following formulas:

Fahrenheit =
Kelvin =

Answer:

N(t) = N0e−λt

d = √(x2 − x1)2 + (y2 − y1)2

In []:

Celsius × + 329
5

Celsius + 273.15

def temperature_converter(celsius):

 fahrenheit = (celsius * 9/5) + 32

 kelvin = celsius + 273.15

 return fahrenheit, kelvin

celsius = float(input("Enter temperature in Celsius: "))

fahrenheit, kelvin = temperature_converter(celsius)

print(f"Temperature in Fahrenheit: {fahrenheit}")

print(f"Temperature in Kelvin: {kelvin}")

2. Gravitational Force Calculator (Physics)

Question:

Create a program that calculates the gravitational force between two masses using the formula:

 Where is the gravitational constant.

Answer:

def gravitational_force(m1, m2, r):

 G = 6.674 * 10**-11

 force = (G * m1 * m2) / r**2

 return force

m1 = float(input("Enter the mass of the first object (kg): "))

m2 = float(input("Enter the mass of the second object (kg): "))

r = float(input("Enter the distance between the objects (m): "))

force = gravitational_force(m1, m2, r)

print(f"The gravitational force is: {force} N")

3. Prime Number Checker (Mathematics)

Question:

Write a program to check if a number is prime.

Answer:
def is_prime(number):

 if number <= 1:

 return False

 for i in range(2, int(number**0.5) + 1):

 if number % i == 0:

 return False

 return True

num = int(input("Enter a number: "))

if is_prime(num):

 print(f"{num} is a prime number.")

else:

 print(f"{num} is not a prime number.")

4. Fibonacci Sequence Generator (Mathematics)

Question:

Write a program to generate the first n numbers in the Fibonacci sequence.

F = G⋅m1⋅m2

r2 G = 6.674 × 10−11

Answer:
def fibonacci(n):

 sequence = [0, 1]

 while len(sequence) < n:

 sequence.append(sequence[-1] + sequence[-2])

 return sequence[:n]

n = int(input("Enter the number of Fibonacci terms to generate: "))

fib_sequence = fibonacci(n)

print(f"The first {n} terms of the Fibonacci sequence: {fib_sequence}")

5. pH Value Classifier (Chemistry)

Question:

Write a program that classifies a solution as acidic, neutral, or basic based on its pH value.

Answer:

def classify_ph(ph_value):

 if ph_value < 7:

 return "Acidic"

 elif ph_value == 7:

 return "Neutral"

 else:

 return "Basic"

ph_value = float(input("Enter the pH value: "))

classification = classify_ph(ph_value)

print(f"The solution is: {classification}")

6. Rock Classification (Geology)

Question:

Create a program that classifies rocks as igneous, sedimentary, or metamorphic. The program
should store example rock names in tuples for each type.

Answer:
def classify_rock(rock):

 igneous = ("Granite", "Basalt", "Obsidian")

 sedimentary = ("Limestone", "Shale", "Sandstone")

 metamorphic = ("Marble", "Slate", "Schist")

 if rock in igneous:

 return "Igneous"

 elif rock in sedimentary:

 return "Sedimentary"

 elif rock in metamorphic:

 return "Metamorphic"

 else:

 return "Unknown"

rock_name = input("Enter the name of the rock: ").capitalize()

classification = classify_rock(rock_name)

print(f"{rock_name} is a {classification} rock.")

7. Projectile Motion Calculator (Physics)

Question:

Write a program that calculates the range and maximum height of a projectile given initial velocity
and launch angle.

Answer:
import math

def projectile_motion(velocity, angle):

 g = 9.81 # acceleration due to gravity (m/s^2)

 angle_rad = math.radians(angle)

 range_proj = (velocity**2 * math.sin(2*angle_rad)) / g

 max_height = (velocity**2 * math.sin(angle_rad)**2) / (2*g)

 return range_proj, max_height

velocity = float(input("Enter the initial velocity (m/s): "))

angle = float(input("Enter the launch angle (degrees): "))

range_proj, max_height = projectile_motion(velocity, angle)

print(f"Range: {range_proj:.2f} meters")

print(f"Maximum Height: {max_height:.2f} meters")

8. Matrix Multiplication (Mathematics)

Question:

Write a program to perform matrix multiplication between two matrices.

Answer:

def matrix_multiply(A, B):

 result = [[0 for _ in range(len(B[0]))] for _ in range(len(A))]

 for i in range(len(A)):

 for j in range(len(B[0])):

 for k in range(len(B)):

 result[i][j] += A[i][k] * B[k][j]

 return result

A = [[1, 2], [3, 4]]

B = [[5, 6], [7, 8]]

result = matrix_multiply(A, B)

print("Result of matrix multiplication:")

for row in result:

 print(row)

9. Periodic Table Lookup (Chemistry)

Question:

Create a program that stores the atomic numbers and symbols of the first 20 elements in a
dictionary and allows the user to look up elements by atomic number or symbol.

Answer:

periodic_table = {

 1: "H", 2: "He", 3: "Li", 4: "Be", 5: "B", 6: "C", 7: "N", 8: "O", 9:

"F", 10: "Ne",

 11: "Na", 12: "Mg", 13: "Al", 14: "Si", 15: "P", 16: "S", 17: "Cl", 18:

"Ar", 19: "K", 20: "Ca"

}

def lookup_element(query):

 if isinstance(query, int):

 return periodic_table.get(query, "Unknown element")

 elif isinstance(query, str):

 for number, symbol in periodic_table.items():

 if symbol == query.capitalize():

 return number

 return "Unknown element"

query = input("Enter atomic number or symbol: ")

if query.isdigit():

 result = lookup_element(int(query))

else:

 result = lookup_element(query)

print(f"Result: {result}")

10. Earthquake Magnitude Classifier (Geology)

Question:

Write a program that classifies earthquakes based on the Richter scale magnitude.

Answer:
def classify_earthquake(magnitude):

 if magnitude < 4.0:

 return "Minor"

 elif 4.0 <= magnitude < 5.0:

 return "Light"

 elif 5.0 <= magnitude < 6.0:

 return "Moderate"

 elif 6.0 <= magnitude < 7.0:

 return "Strong"

 else:

 return "Major"

magnitude = float(input("Enter the earthquake magnitude: "))

classification = classify_earthquake(magnitude)

print(f"Earthquake classification: {classification}")

Assignment 3
1. There are a total of 5 problems. Each question is compulsory.

2. Each question carries 2 marks.

3. Provide neat and clean code with comments and best practices.

11. Factorial Calculator (Mathematics)

In []:

Question:

Write a Python program that calculates the factorial of a given number n . The factorial of a
number n is defined as:

Hint:

You can use a for loop to multiply the numbers from 1 to n .
Consider initializing a variable, fact , to 1, and then multiply it by each number in the range
from 1 to n .

12. Simulating Radioactive Decay (Physics)

Question:

Write a program that simulates radioactive decay using the decay formula: Where:

 is the initial number of atoms,
 is the decay constant,
 is time.

Hint:

Use the math.exp() function to compute the exponential decay.
You'll need to input the values for , , and .
The decay formula gives the number of atoms left after a certain time, so your program
should output that number.

13. Distance Between Two Points (Mathematics)

Question:

Write a program that calculates the distance between two points in a 2D plane. The distance
between points and is given by:

Hint:

Use the math.sqrt() function to calculate the square root.
You'll need to ask the user for the coordinates of the two points and then apply the distance
formula.
Make sure you use **2 to calculate squares in Python.

14. Planetary Weight Calculator (Physics)

Question:

Write a program that calculates a person's weight on different planets in the solar system. Given
their weight on Earth, calculate their weight on another planet using the planet's gravitational
factor relative to Earth's gravity.

Hint:

Create a dictionary where the keys are planet names and the values are their gravitational
factors (relative to Earth).

n! = n × (n− 1) × (n− 2) ×⋯ × 1

N(t) = N0e−λt

N0
λ
t

N0 λ t

(x1, y1) (x2, y2) d = √(x2 − x1)2 + (y2 − y1)2

The formula is:

Ask the user for their weight on Earth and the planet they want to know their weight on.

15. Unit Converter (General)

Question:

Write a Python program that converts units such as kilometers to miles, grams to ounces, or
Celsius to Fahrenheit. Let the user choose the conversion type and input a value to be converted.

Hint:

Use a dictionary to store conversion factors between units.
Based on the user’s input, choose the correct conversion factor and apply it to the value.
You can use multiple if-else statements to check which conversion the user wants to
perform.

Understanding Modules in Python
What is a Module?
A module in Python is simply a file containing Python code. It can define functions, classes, and
variables, and can also include runnable code. Modules allow you to break down large programs
into smaller, more manageable pieces of code.

Why Use Modules?
Code Reusability: Write code once and reuse it across different programs.
Organization: Group related functions, classes, or variables together in a file.
Maintainability: Easier to debug and update smaller sections of code.
Namespace Management: Avoid name clashes by separating code into different modules.

How to Create a Module
Any Python file (.py) can be treated as a module. For example, you can create a file called
my_module.py :

my_module.py

def greet(name):

 return f"Hello, {name}!"

PI = 3.14159

Importing a Module

weight on planet = weight on Earth × gravitational factor

In []:

In []:

You can import a module into another script using the import statement. This allows you to
access the functions and variables defined in that module.

Importing my_module in another script

import my_module

print(my_module.greet("Class")) # Output: Hello, Class!

print(my_module.PI) # Output: 3.14159

import module

print(module.greet("Class")) # Output: Hello, Class!

print(module.PI) # Output: 3.14159

Hello, Class!

3.14159

Importing Specific Functions or Variables
You can also import specific functions or variables from a module:

from my_module import greet, PI

print(greet("Class")) # Output: Hello, Class!

print(PI) # Output: 3.14159

Renaming Modules
You can give an imported module a different name using the as keyword:

import my_module as mm

print(mm.greet("Class")) # Output: Hello, Class!

Built-in Python Modules
Python has a large standard library of built-in modules you can use, such as math , random ,
os , etc.

Example of using the math module:

import math

print(math.sqrt(16)) # Output: 4.0

print(math.pi) # Output: 3.141592653589793

Exploring Module Content

In []:

In [79]:

In []:

In []:

In []:

In []:

You can use the dir() function to list all the functions and variables defined in a module:

import math

print(dir(math))

Conclusion
Modules are essential for writing clean, organized, and reusable code. By breaking down complex
programs into smaller modules, you can make your code more manageable and maintainable.

Here's a guide on the basic usage of the NumPy module along with some examples of routines
that are useful for scientific purposes:

Introduction to NumPy
NumPy is a powerful library in Python that is used for numerical computing. It allows the creation
and manipulation of large, multi-dimensional arrays and matrices, along with a collection of
mathematical functions to operate on these arrays.

Installation
If NumPy is not already installed, you can install it using pip:

sudo apt-get install python3-pip

pip install numpy

Basic Usage of NumPy

1. Creating Arrays
import numpy as np

Creating a 1D array

arr1 = np.array([1, 2, 3])

Creating a 2D array

arr2 = np.array([[1, 2, 3], [4, 5, 6]])

Creating arrays with zeros and ones

zeros = np.zeros((2, 3)) # 2x3 array of zeros

ones = np.ones((2, 3)) # 2x3 array of ones

Creating arrays with a range of values

arr_range = np.arange(0, 10, 2) # From 0 to 9, step 2

Creating arrays with equally spaced numbers

lin_space = np.linspace(0, 1, 5) # 5 numbers between 0 and 1

2. Array Attributes
Getting the shape of an array

print(arr2.shape) # Output: (2, 3)

Getting the number of dimensions

In []:

print(arr2.ndim) # Output: 2

Getting the size (number of elements)

print(arr2.size) # Output: 6

Getting the data type of elements

print(arr2.dtype) # Output: int64 (or similar)

3. Reshaping Arrays
Reshaping a 1D array into a 2D array

reshaped = arr1.reshape(1, 3) # Output: array([[1, 2, 3]])

4. Mathematical Operations
Element-wise operations

arr3 = np.array([1, 2, 3])

arr4 = np.array([4, 5, 6])

sum_arr = arr3 + arr4 # Output: array([5, 7, 9])

prod_arr = arr3 * arr4 # Output: array([4, 10, 18])

Scalar operations

arr_scalar = arr3 * 2 # Output: array([2, 4, 6])

Universal functions (ufuncs)

sin_arr = np.sin(arr3) # Applies sine function element-wise

Useful NumPy Routines for Scientific Purposes

1. Random Number Generation
Generating random numbers

rand_nums = np.random.random((3, 3)) # 3x3 array of random numbers between

0 and 1

Normal distribution

normal_dist = np.random.normal(0, 1, (3, 3)) # Mean 0, standard deviation 1

2. Statistical Functions
data = np.array([1, 2, 3, 4, 5])

Mean

mean = np.mean(data) # Output: 3.0

Standard deviation

std_dev = np.std(data) # Output: 1.414...

Median

median = np.median(data) # Output: 3.0

3. Linear Algebra
Matrix multiplication

A = np.array([[1, 2], [3, 4]])

B = np.array([[5, 6], [7, 8]])

matmul = np.dot(A, B) # Output: [[19, 22], [43, 50]]

Matrix inverse

inv_A = np.linalg.inv(A) # Output: [[-2. , 1.], [1.5, -0.5]]

Eigenvalues and eigenvectors

eigen_vals, eigen_vecs = np.linalg.eig(A)

4. Integration with Other Libraries
SciPy: NumPy arrays are compatible with the SciPy library, which offers more advanced
mathematical operations (integration, optimization, etc.).
Pandas: NumPy arrays are the foundation of the Pandas library, which is widely used for data
manipulation and analysis.

5. Fast Fourier Transform (FFT)
Computing the Fast Fourier Transform

x = np.array([0, 1, 2, 3])

fft_x = np.fft.fft(x) # Output: [6.+0.j -2.+2.j -2.+0.j -2.-2.j]

6. Saving and Loading Arrays
Saving an array to a file

np.save('my_array.npy', arr1)

Loading an array from a file

loaded_arr = np.load('my_array.npy')

Conclusion
NumPy is a fundamental library for scientific computing in Python, providing powerful array
operations and mathematical functions. Its integration with libraries like SciPy and Pandas makes
it an essential tool for data analysis, machine learning, and scientific research.

import numpy as np

a = np.array([[1,2], [3,5]])

Problems for practice

Problem 1: Creating Arrays
Write a Python program that creates a 3x3 matrix with values ranging from 1 to 9, and then print
the matrix.

Problem 2: Array Slicing
Given the following 3D NumPy array:

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

Write a program to extract the second column from the array.

Problem 3: Arithmetic Operations

In []:

Create two NumPy arrays:

arr1 = np.array([1, 2, 3, 4, 5])

arr2 = np.array([5, 4, 3, 2, 1])

Write a program to perform the following operations:

Add the two arrays.
Multiply the two arrays.
Find the element-wise difference between arr1 and arr2 .

Problem 4: Broadcasting
Write a program to add a constant value of 10 to each element of the following array:

arr = np.array([[10, 20, 30], [40, 50, 60]])

Problem 5: Reshaping Arrays
Given the following array:

arr = np.arange(12)

Answer

new_arr = arr.reshape(4, 3)

print(new_arr)

Write a program to reshape this 1D array into a 3x4 2D array.

Problem 6: Statistical Functions
Given the following array of exam scores:

scores = np.array([55, 89, 76, 65, 93, 42, 67])

Write a program to calculate and print the mean, median, and standard deviation of the scores.

Problem 7: Random Numbers
Write a program to generate a 4x4 matrix of random numbers sampled from a normal
distribution with a mean of 0 and a standard deviation of 1.

Problem 8: Matrix Multiplication
Given the following two matrices:

A = np.array([[1, 2], [3, 4]])

B = np.array([[5, 6], [7, 8]])

Write a program to compute the dot product of matrices A and B .

Problem 9: Boolean Indexing
Given the following array of numbers:

arr = np.array([10, 25, 33, 45, 55, 67, 72, 89, 91])

Write a program to extract all numbers from the array that are greater than 50.

Problem 10: Element-wise Conditional

Write a program to replace all elements in the following array that are greater than 5 with 0, and
leave the other elements unchanged:

arr = np.array([1, 4, 6, 8, 10])

A beginners guide on the usage of the Pandas module, along with examples that are useful for
data manipulation and analysis in scientific and practical contexts.

Introduction to Pandas
Pandas is an open-source library that provides high-performance, easy-to-use data structures and
data analysis tools for Python. It is built on top of NumPy and is widely used for data
manipulation, cleaning, and analysis tasks.

Installation
If Pandas is not already installed, you can install it using pip:

pip install pandas

Basic Usage of Pandas

1. Creating DataFrames

A DataFrame is a 2-dimensional, size-mutable, and potentially heterogeneous data structure. It is
similar to an Excel spreadsheet or SQL table.

import pandas as pd

Creating a DataFrame from a dictionary

data = {

 'Name': ['Alice', 'Bob', 'Charlie'],

 'Age': [25, 30, 35],

 'Score': [85, 90, 95]

}

df = pd.DataFrame(data)

Displaying the DataFrame

print(df)

2. Loading Data from Files

Pandas allows you to read and write data from various file formats such as CSV, Excel, JSON, and
SQL databases.

Reading a CSV file into a DataFrame

df = pd.read_csv('data.csv')

Writing a DataFrame to a CSV file

df.to_csv('output.csv', index=False)

3. DataFrame Attributes

Getting basic information about the DataFrame

print(df.shape) # Number of rows and columns

In []:

In []:

print(df.columns) # Column names

print(df.dtypes) # Data types of each column

Quick statistics summary of numerical data

print(df.describe())

4. Selecting Data

Selecting a single column

ages = df['Age']

Selecting multiple columns

subset = df[['Name', 'Score']]

Selecting rows by index

row_0 = df.iloc[0] # First row

rows_1_to_3 = df.iloc[1:3] # Second and third rows

Selecting rows by condition

adults = df[df['Age'] > 18]

Useful Pandas Routines for Scientific Purposes

1. Handling Missing Data
Filling missing data with a specified value

df.fillna(0, inplace=True)

Dropping rows with missing values

df.dropna(inplace=True)

Checking for missing values

print(df.isnull().sum())

2. Data Manipulation
Adding a new column

df['Passed'] = df['Score'] > 50

Renaming columns

df.rename(columns={'Name': 'Student Name', 'Score': 'Exam Score'},

inplace=True)

Dropping columns

df.drop(columns=['Age'], inplace=True)

3. Sorting and Ranking

Sorting by column values

df_sorted = df.sort_values(by='Score', ascending=False)

Ranking the data

df['Rank'] = df['Score'].rank(ascending=False)

4. Grouping and Aggregation
Grouping by a column and applying aggregate functions

grouped = df.groupby('Passed').agg({

 'Score': ['mean', 'min', 'max'],

 'Age': 'mean'

})

Resetting the index

grouped.reset_index(inplace=True)

5. Merging and Joining DataFrames

Creating another DataFrame

df2 = pd.DataFrame({

 'Name': ['Alice', 'Charlie', 'David'],

 'City': ['New York', 'Los Angeles', 'Chicago']

})

Merging DataFrames on a common column

merged_df = pd.merge(df, df2, on='Name', how='left') # Left join

6. Time Series Data

Pandas is great for handling time series data, with built-in support for date and time data types.

Creating a time series

dates = pd.date_range('20230101', periods=6)

df_time = pd.DataFrame({'Date': dates, 'Value': [10, 15, 20, 25, 30, 35]})

Setting the index to the Date column

df_time.set_index('Date', inplace=True)

Resampling the data (e.g., converting daily data to monthly data)

monthly_data = df_time.resample('M').mean()

7. Statistical Functions

Applying statistical functions

mean_score = df['Score'].mean() # Mean of the 'Score' column

median_age = df['Age'].median() # Median of the 'Age' column

Cumulative sum

df['Cumulative Score'] = df['Score'].cumsum()

Correlation between numerical columns

correlation = df.corr()

8. Visualization with Pandas

Pandas has built-in support for basic plotting using Matplotlib. You can visualize your data with
just one line of code.

import matplotlib.pyplot as plt

Plotting a column

df['Score'].plot(kind='line')

plt.show()

Plotting histograms

df['Score'].plot(kind='hist')

plt.show()

Conclusion
Pandas is a powerful and flexible library for data manipulation, offering DataFrames and Series for
managing structured data. Whether you're working with CSV files, time series data, or performing
complex group operations, Pandas simplifies the workflow for data analysis. It integrates

seamlessly with libraries like NumPy, Matplotlib, and Scikit-learn, making it a versatile tool in
scientific computing.

Problem 1: Creating a DataFrame
Create a DataFrame from the following dictionary:

data = {

 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],

 'Age': [25, 30, 35, 40, 45],

 'Score': [85, 90, 95, 100, 88]

}

Write a program to create the DataFrame and print it.

Problem 2: Selecting Columns
Given the following DataFrame:

df = pd.DataFrame({

 'Name': ['Tom', 'Jerry', 'Spike', 'Tyke'],

 'Age': [22, 21, 23, 20],

 'Grade': [88, 92, 85, 95]

})

Write a program to select and print only the Name and Grade columns.

Problem 3: Filtering Rows
Using the DataFrame from Problem 2, write a program to filter out and display only the rows
where the Grade is greater than 90.

Problem 4: Adding a New Column
Using the DataFrame from Problem 2, write a program to add a new column named Pass that
contains True if the Grade is greater than 85 and False otherwise.

Problem 5: Reading Data from CSV
Write a program to read a CSV file into a DataFrame. Assume the CSV file is named
students.csv and contains the columns Name , Age , and Score . Print the first 5 rows of the

DataFrame.

Problem 6: Handling Missing Data
Write a program to create the following DataFrame:

data = {

 'Name': ['Anna', 'Brian', 'Cathy', 'Diana'],

 'Age': [23, None, 35, 29],

 'Score': [85, 88, None, 90]

}

df = pd.DataFrame(data)

Replace all missing values in the Age column with the mean age.
Replace all missing values in the Score column with 0.

In []:

Print the updated DataFrame.

Problem 7: Grouping and Aggregation
Given the following DataFrame:

df = pd.DataFrame({

 'Team': ['A', 'B', 'A', 'B', 'A', 'B'],

 'Player': ['Alice', 'Bob', 'Charlie', 'David', 'Eva', 'Frank'],

 'Score': [88, 95, 82, 91, 89, 87]

})

Write a program to group the data by Team and calculate the average Score for each team.

Problem 8: Sorting Data
Given the following DataFrame:

df = pd.DataFrame({

 'Name': ['Xander', 'Yvonne', 'Zara', 'Walter'],

 'Age': [35, 28, 40, 33],

 'Salary': [70000, 65000, 80000, 72000]

})

Write a program to sort the DataFrame by Salary in descending order and print the result.

Problem 9: Merging DataFrames
Given the following two DataFrames:

df1 = pd.DataFrame({

 'Name': ['Alice', 'Bob', 'Charlie'],

 'Score': [85, 90, 95]

})

df2 = pd.DataFrame({

 'Name': ['Alice', 'Charlie', 'David'],

 'City': ['New York', 'Los Angeles', 'Chicago']

})

Write a program to merge these two DataFrames on the Name column and display the result.
Use a left join.

Problem 10: Working with Time Series
Write a program to:

Create a time series of daily temperatures for 7 days starting from '2023-01-01'.
Create a DataFrame that contains a Date column with the dates and a Temperature
column with the following values: [32, 35, 28, 30, 31, 29, 33] .
Set the Date column as the index of the DataFrame and print the result.

These problems test the core concepts of Pandas, such as DataFrame creation, column and row
selection, filtering, handling missing data, grouping, sorting, merging, and working with time
series.

 In []:

