Project Ideas for End Term Examination

Nitesh

October 10, 2024

Contents

1	Inst	ructio	ns for the End-Term Examination	2
2	Proposed projects			
	2.1	Physic	s Projects	2
		2.1.1	Simple Harmonic Motion Simulator	2
		2.1.2	Projectile Motion Calculator and Plotter	2
		2.1.3	Ohm's Law Calculator	2
		2.1.4	Kinematic Equations Solver	2
		2.1.5	Simple Circuit Simulator	3
	2.2	Mathe	ematics Projects	3
		2.2.1	Prime Number Finder	3
		2.2.2	Fibonacci Sequence Generator	3
		2.2.3	Pythagorean Theorem Visualizer	3
		2.2.4	Algebra Solver	3
		2.2.5	Factorial Calculator	3
	2.3	Chemi	stry Projects	3
		2.3.1	Periodic Table Lookup	3
		2.3.2	Chemical Equation Balancer	4
		2.3.3	Molar Mass Calculator	4
		2.3.4	Gas Law Simulator	4
		2.3.5	pH Calculator	4
	2.4	Geolog	zv Projects	4
		2.4.1	Rock Type Classifier	4
		2.4.2	Earthquake Intensity Simulator	4
		2.4.3	Plate Tectonics Visualizer	4
		2.4.4	Mineral Property Lookup	5
		2.4.5	Volcano Eruption Probability	5

1 Instructions for the End-Term Examination

- 1. All students must form groups of five.
- 2. As a group, propose a topic of your choice that involves solving a real-world problem using Python programming.
- 3. A list of suggested project ideas relevant to your field is provided for reference, though you are not limited to selecting a project within your field.
- 4. Your group must prepare a report in IAT_EX , ensuring proper formatting, inclusion of a table of contents, figures, and references.
- 5. The report should clearly specify each member's contribution.
- 6. Prior to the final exam, you will present your project. Each group will have 10 minutes (2 minutes per student), followed by a 5-minute viva.
- 7. The marking scheme is as follows: 20 marks for the project, 20 marks for the report, and 10 marks for the viva.

2 Proposed projects

2.1 Physics Projects

2.1.1 Simple Harmonic Motion Simulator

Python Task: Simulate the oscillation of a pendulum or spring and plot position, velocity, and energy graphs over time.

LaTeX Report: Include the mathematical model of SHM, a description of the simulation, plots of motion, and a discussion of energy conservation.

2.1.2 Projectile Motion Calculator and Plotter

Python Task: Take initial velocity and launch angle as inputs to calculate and plot the trajectory of a projectile.

LaTeX Report: Present the equations of motion, include trajectory graphs for different angles, and discuss how varying initial conditions affect the range and height.

2.1.3 Ohm's Law Calculator

Python Task: Create a tool to calculate current, voltage, or resistance when given any two values.

LaTeX Report: Provide a short theoretical background on Ohm's law, example calculations, and discuss how the program helps verify basic circuit properties.

2.1.4 Kinematic Equations Solver

Python Task: Create a tool that solves the kinematic equations for different variables like velocity, acceleration, and time.

LaTeX Report: Explain the equations, include example scenarios, and provide detailed solutions calculated by the program.

2.1.5 Simple Circuit Simulator

Python Task: Simulate a basic DC circuit and calculate current, voltage drop, and power dissipation across resistors.

LaTeX Report: Illustrate the circuit, explain the calculations, and include tables and graphs of current or voltage distributions.

2.2 Mathematics Projects

2.2.1 Prime Number Finder

Python Task: Create a program that checks if a number is prime and generates a list of primes up to a user-defined limit.

LaTeX Report: Include a brief theory of prime numbers, a list of found primes, and discuss patterns or distributions.

2.2.2 Fibonacci Sequence Generator

Python Task: Generate the Fibonacci sequence up to a given number of terms and visualize it.

LaTeX Report: Discuss the Fibonacci sequence, include generated sequences, and visualize the Fibonacci spiral using matplotlib in Python.

2.2.3 Pythagorean Theorem Visualizer

Python Task: Take the lengths of two sides of a right-angled triangle and calculate the hypotenuse, displaying a visual representation.

LaTeX Report: Present the theorem, provide calculations for sample inputs, and include graphical representations of triangles with calculated sides.

2.2.4 Algebra Solver

Python Task: Solve linear equations of the form ax + b = c.

LaTeX Report: Discuss how linear equations work, provide examples of input/output from the program, and explain step-by-step solutions.

2.2.5 Factorial Calculator

Python Task: Write a program to calculate the factorial of a given number using loops or recursion.

LaTeX Report: Explain the concept of factorial, show results for different numbers, and discuss the computational efficiency of recursive vs loop-based solutions.

2.3 Chemistry Projects

2.3.1 Periodic Table Lookup

Python Task: Create a tool that lets the user search for an element by symbol or atomic number and displays its properties.

LaTeX Report: Include a brief introduction to the periodic table, a few example element lookups, and a discussion of trends in element properties.

2.3.2 Chemical Equation Balancer

Python Task: Create a program to balance simple chemical reactions by taking reactants and products as input.

LaTeX Report: Explain the importance of balancing equations, show examples of input/output, and discuss the rules of balancing.

2.3.3 Molar Mass Calculator

Python Task: Implement a program that calculates the molar mass of a compound based on its chemical formula.

LaTeX Report: Include a table of molar masses calculated for common compounds, explain the process, and discuss how to use molar mass in chemical calculations.

2.3.4 Gas Law Simulator

Python Task: Simulate the relationships between pressure, volume, and temperature using the ideal gas law.

LaTeX Report: Present the ideal gas law, include graphs showing the relationships between variables, and discuss real-world applications.

2.3.5 pH Calculator

Python Task: Write a program to calculate the pH of a solution based on the concentration of hydrogen ions.

LaTeX Report: Provide background on the pH scale, show calculated pH values for different concentrations, and discuss how pH is used in chemistry.

2.4 Geology Projects

2.4.1 Rock Type Classifier

Python Task: Classify rocks based on characteristics like hardness and texture, and assign them as igneous, sedimentary, or metamorphic.

LaTeX Report: Include a table of classified rocks, a brief explanation of each rock type, and discuss the decision-making process in the program.

2.4.2 Earthquake Intensity Simulator

Python Task: Simulate the intensity of an earthquake over time, visualizing seismic wave propagation.

LaTeX Report: Discuss how earthquake intensity is measured, include simulated data, and explain how the program mimics real seismic events.

2.4.3 Plate Tectonics Visualizer

Python Task: Create a visualization of tectonic plate movements and the resulting geological features.

LaTeX Report: Include a brief overview of plate tectonics theory, a visual representation of tectonic movements, and explain how the program models this process.

2.4.4 Mineral Property Lookup

Python Task: Implement a tool where users can input a mineral's name to look up properties like hardness, streak, and color.

LaTeX Report: Provide a summary of different minerals, show example lookups, and discuss the importance of mineral identification in geology.

2.4.5 Volcano Eruption Probability

Python Task: Build a program that estimates the likelihood of a volcanic eruption based on historical data and certain geophysical indicators.

LaTeX Report: Explain the factors that influence volcanic eruptions, include program outputs for different volcanoes, and discuss the implications of such predictions.