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Chapter 1

Frequency Distribution

Step 1: Prepare Your Data

Let’s assume you have a data file named data.txt with raw data points:
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5 20
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Step 2: Create the Frequency Distribution and Save
it to a File

Use a shell command to generate the frequency distribution and save it in a file named
freq_data.txt:

$ sort data.txt | uniq —c | awk ’{print $2, $1}’ > freq_data.txt

Explanation:
e sort data.txt: Sorts the data.
e uniq -c: Counts the frequency of each unique value.

e awk ’{print $2, $1}’: Reorders the output so that the value appears first, fol-
lowed by the frequency.

The resulting freq data.txt will look like this:

10
12

17
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Chapter 1. Frequency Distribution

Step 3: Compile the Frequency Distribution and Eval-
uate Mean and Standard Deviation using Gnuplot

Now, you'll use Gnuplot to calculate the mean and standard deviation from this frequency
distribution.
Create a Gnuplot script calc_stats.gnuplot:

1 # calc_stats.gnuplot

3 # Load the frequency distribution
1 stats 7freq_data.txt” using 1:2 name ”freq” nooutput

6 # Calculate the mean (weighted by frequency)
7 mean = freq_mean_y

9 # Calculate the standard deviation

0o sd = freq_stddev_y

3 print "Mean =", mean

1

1

12 # Print results

1

14 print ”Standard Deviation =", sd

Step 4: Run the Gnuplot Script

Execute the Gnuplot script to calculate and display the mean and standard deviation:

1 $ gnuplot calc_stats.gnuplot
Explanation:

e stats "freq.data.txt" using 1:2 name "freq" nooutput: This command cal-
culates the sum, sum of squares, and other statistical measures from the frequency
distribution.

e mean = freq sumy / freq_sum: Computes the mean by dividing the sum of values
(weighted by their frequency) by the total number of observations.

e sd = sqrt((freq.sum_y2 / freq.sum) - (mean * mean)): Computes the stan-
dard deviation using the variance formula.

Step 5: Output Interpretation
After running the Gnuplot script, it will print the mean and standard deviation to the

console.

Summary

e You first sort your data and generate a frequency distribution using shell commands.
e Save the frequency distribution to a file.

e Use Gnuplot to load the frequency data, compute the mean, and calculate the
standard deviation.

(©) 2024 Nitesh Kumar. All rights reserved. 6



Chapter 1. Frequency Distribution

For Plotting:

Here’s a complete Gnuplot script that plots the frequency distribution and marks the
mean and standard deviation on the plot. We’ll assume you have your frequency distri-
bution saved in freq_data.txt.

Gnuplot Script: plot with stats.gnuplot

# plot_with_stats.gnuplot

# Load the frequency distribution data
stats "freq_data.txt” using 1:2 name ”freq” nooutput

AW N =

6 # Calculate mean and standard deviation
7 mean = freq_mean_y
s sd = freq_stddev_y

10 # Configure the plot

11 set title ”Frequency Distribution with Mean and Standard Deviation”
12 set xlabel ”Value”

13 set ylabel ”Frequency”

14 set style data histograms

15 set style fill solid 0.5 border —1

16 set boxwidth 0.9

18 # Plot the frequency distribution
19 plot 7freq_-data.txt” using 2:xtic(1l) title ”Frequency” with boxes lc rgb

»

blue” ; \
20 77 using (mean):0 title "Mean” with lines lw 2 lc rgb "red”, \
21 7”7 using (mean—sd):0 title "Mean — 1 SD” with lines lw 1 lc rgb ”green
dt 2, \
22 77 using (meantsd):0 title "Mean + 1 SD” with lines lw 1 lc rgb ”green
dt 2

24 # Optional: Show the calculated mean and standard deviation on the plot

25 set label sprintf(”Mean = %.2f” , mean) at graph 0.02, graph 0.95 textcolor
rgb 7red”

26 set label sprintf(”Standard Deviation = %.2f”, sd) at graph 0.02, graph
0.90 textcolor rgb "green”

2
2s # Replot to ensure labels are included
29 replot

Step-by-Step Explanation

1. stats "freq.data.txt" using 1:2 name "freq" nooutput: This calculates the
statistics, storing them with the prefix freq_.

2. The mean is calculated as mean = freq_sum.y / freq_sum.

3. The standard deviation is calculated using sd = sqrt((freq_sum_y2 / freq_sum)
- (mean * mean)).

4. Plot settings are configured with set style data histograms, set style fill
solid 0.5 border -1, and set boxwidth 0.9.

(© 2024 Nitesh Kumar. All rights reserved. 7



Chapter 1. Frequency Distribution

5. The frequency distribution is plotted as a histogram, with the mean and standard
deviation bounds marked by vertical lines.

6. Labels showing the calculated mean and standard deviation are added to the plot.

Running the Script

To execute this script, save it as plot_with_stats.gnuplot and run it with Gnuplot:

1 $ gnuplot —persist plot_with_stats.gnuplot

This script will produce a histogram of your frequency distribution, with the mean
and standard deviation clearly marked.

(©) 2024 Nitesh Kumar. All rights reserved. 8



Chapter 2

Finite and Infinite Series

2.1 Introduction

In physics, we often require to derive the values of few functions such as sin (x), cos
(x),. These functions can be expressed by infinite series, infinite products or continued
ffractions. For example:

72 3 74 o "
e—l+x+§+§+z+ ZOE (2.1)
. I R o £(2n+1)
sin(x) = x — 3 + - — Z 277, 1) (2.2)

n=0

The numerical methods to derive the values of these expressions will be discussed
here.

2.2 Finite Series

Consider the following finite sum of a series:

2 l.3 Qf4 "

x
Sn()—1+$+§+§+z+ +m (23)
Here each term is of the form f—: ;withi=0, 1, 2, ..., n. Aslong as n is a small

number, there is no problem and we can actually evaluate each term and then sum them
up. However, if we wish to find the sum of this series for large n, say n = 20, there is a
serious problem - the computer cannot handle large numbers and 20! is a "very large”
number (~ 2.4 x 1018 ). So clearly we need to find another way to summing of series with
very large or very small terms.

We overcome this problem by not evaluating individual terms of the series. Instead
we find the ratio of two consecutive terms, ¢; and t;_; . Suppose this ratio is R. Then
t; = Rt;_1 . Since R is usually a small number, it is possible to find all the terms, given
the first term t(, by assigning to ¢ the values 1, 2, 3, ... . By adding these terms we get
the required sum.



1

2

3

5

6

Chapter 2. Finite and Infinite Series

In the specific example of the series Eq 2.3 above, we can easily see that

x
i1
tii1 = — 2.5
=) (2:5)
t; T
R = == 2.6
T (2.6)
Therefore, starting with tg = 1, we get
2
. x x
2 3 3
i=3 ty=Rty= -2 = L T (2.9)

32 3x2 6
and so on. We then define a quantity called the j-th partial sum S; as

J
Si=>Y t (2.10)
=0

Note an interesting property of this quantity. Any partial sum is by definition the
sum of the previous partial sum and the term itself. Thus,

5 4
Sy=> ti= (Zt) 15 = Sy + 5 (2.11)
=0 =0

This is a property we can use to sum the series iteratively. Thus, the algorithm for
summing a finite series to a given number of terms is simple.

1. Find ¢ or t; , the first term of the series.

2. Find R, the ratio of the i*" term.

3. Find Sy or 57 , the first partial Sum.

4. From ty or t; and R, find the next term.

5. Add the next term to the first partial Sum to get the second partial Sum.

6. Repeat this process till we get the required partial Sum which is the Sum of the
finite series.

The following program can carry out this process:

! Program for evaluating a finite series
PROGRAM finite_series

IMPLICIT NONE

REAL :: x, t, s

INTEGER :: n, i

PRINT %, ’'Supply x and the number of terms n:’

(©) 2024 Nitesh Kumar. All rights reserved. 10



Chapter 2. Finite and Infinite Series

8 I' If n = 20, the last term is x"20 / 19!
9 READ %, x, n

1.0
12 t = 1.0 ! Initial values of sum s and the first term t

14 I The following loop evaluates the terms and sums them

5 DOi=1, n-1 ! i starts at 1; t=0 term is the initial value
16 t =t *x /1 ! x/i is simply the ratio R

17 S =8 +t

18 END DO

20 PRINT =«

21 PRINT %, 'x =", x, "n =", n, ’, sum =", s

22 END PROGRAM finite_series

Here is the same code in C++:

1 /+* Program for evaluating a finite series x/
2 #include <iostream>
3 #include <cmath> // For math functions if needed

5 using namespace std;
7 int main() {
8 float x, t, s;

9 int n, i;

11 cout << ”Supply x and the number of terms n: \n”;

12 /% If n = 20, the last term is x"{20} / 19! %/

13 cin >> x >> n;

5 s = 1.0;

16 t = 1.0; // Initial values of sum s and the first term t

18 /% The following loop evaluates the terms and sums them x/

19 for (i = 1; i <n; i++) { // i starts at 1; t=0 term is the initial
value

20 t *==x / i; // x/1i is simply the ratio R

21 s += t;

24 cout << 7\n”;

25 cout << "x =7 << x<< 7" n=" <K< n<”7, sum =7 << scientific << s <<

” \Il” ;

27 return 0;

In this program, the statement s+ = ¢ generates the partial sums Sy(z), S3(z), ...
while tx = % generates the successive terms for : = 1,2,...,n.

Note that the order of the statements tx = £ and s+ = ¢ is important. What
happens if they are interchanged? Note also that the initialization s = 1.0 and
t = 1.0 must be done outside the loop over i. What happens if these are done
within the loop?

(©) 2024 Nitesh Kumar. All rights reserved. 11



Chapter 2. Finite and Infinite Series

Of course, instead of taking the ratio of ¢; and ¢;_;, we could also take the ratio of
t;r1 and ¢;. In this case,

= (2.12)
it
) (2.13)
it x
R = = 2.14
t; 141 ( )

Here that ¢ will now start from 0 and the first term is {; = 1. These two methods
are equivalent provided we take care of the initialization of 7 and ¢.

2.3 Infinite Series

Whereas a finite series can always be summed in principle, the sum of an in infinite series
has a meaning only if the series is convergent. So it must be ensured that the series
under consideration is indeed convergent before one embarks on its evaluation. For finite
series, the number of terms to be summed is given in advance. However, in the case of an
infinite series, obviously an infinite number of terms cannot be summed. So how do we
sum an infinite series? The answer lies in the fact that if the series is convergent, then
by definition it means that adding more and more terms to the partial sum, changes the
partial sums by smaller and smaller amounts. Thus, if we decide that we want the sum
of an infinite series to a given accuracy, then we can stop adding the sums. In effect,
what we are doing is actually summing again a finite series though here we do not before
hand how many terms we need to some to achieve the desired accuracy.

To illustrate, consider the simple case of sin(x). We know that this function can be
written as an infinite series,

- o0 20+
SNz = — o5 + o7 — :nzzo(— ) Gn 1) (2.15)
and the term becomes: ,
; :L.Qz—i-l
ti = (—1) Qi1 (2.16)
and,
2D
tir = (1) CE (2.17)
S0,
2
R = - (2.18)
2
x
R — 2.19
(20 + 1)(21) ( )
(2.20)

(©) 2024 Nitesh Kumar. All rights reserved. 12



Chapter 2. Finite and Infinite Series

Clearly the first term, t is x. What about s? The initial partial sum is obviously the
initial term. Thus the initial values are t = x =s;i = 1.

We can write a program to sum this series to any number of terms for a given value
of x, say x = /4. We know that the result of sin(r/4) = 0.7071. The program below
will evaluate the series upto increasing number of terms till 10. For each term, we will
print the value of that term and the partial sum.

1 /* Program for evaluating a finite series x*/
2 #include <iostream>

3 #include <cmath> // For math functions if needed
t #include <fstream>

5 #define pi 3.14159

6

7 using namespace std;

8

o int main() {

10 float x, t, sum;

11 int n, i;

12 ofstream fp;
13 fp.open("res.txt”)

16 X = pi/4.0;
17 sum = X
18 t = x

20 /* The following loop evaluates the terms and sums them x/

21 for (i = 1; i < 10; i++) { // 1 starts at 1; t=0 term is the initial
value

22 t k= (xxx) / ((2*xi+1)*(2xi));

23 sum —+= t;

24 fp << 1 << "\t’ << t << "\t’ << sum << ’\t’ << sin(x) << endl;

2 }

26 fp . close ()

27 return 0;

You should get the following output in the file:

ti sum Sin(x)
-0.0807453  0.704652 0.707106
0.00249038  0.707143 0.707106
-3.6576e-05  0.707106 0.707106
3.13359e-07  0.707106 0.707106
-1.75723e-09  0.707106 0.707106
6.94838e-12  0.707106 0.707106
-2.041e-14  0.707106 0.707106
4.62864e-17 0.707106 0.707106
-8.34847e-20 0.707106 0.707106

© 00 O U= W N -

Table 2.1: The output file ‘res.txt’.
As you see, this being a very rapidly converging series, after the first four terms, the
partial sum really does not change and so adding more and more terms will not help.

So instead of adding up a large number of terms, we can add a few terms and get the

(©) 2024 Nitesh Kumar. All rights reserved. 13



Chapter 2. Finite and Infinite Series

desired result. Of course, the successive terms after the n = 5 are not really zero but
very small numbers which are being evaluated to zero because the variable defined is a
single precision floating point variable.

So the question is how does one know when to stop adding more and more terms? Or
what is the same thing, how do we check for the desired level of accuracy? Clearly, what
we see from the example above is that if the relative value of the term to be added to a
partial sum is very small compared to the partial sum itself, then it will not change the
partial sum significantly. Thus the quantity that one would want to evaluate and see if
it is small enough is:

tn
Sn—l

If this quantity is smaller than a predetermined value, then we can safely terminate
the series.

accuracy — ‘

/* Program for evaluating a infinite series x/

2 #include <iostream>

s #include <cmath> // For math functions if needed
. #include <fstream>

5 #define pi 3.14159

6

8

9

10

11

12

13

14

15

ST R NG X

SN N NN NN NN
© o N o <

using namespace std;

int main() {
float x, t, sum, acc=0.0001;
int n, i;
ofstream fp;
fp.open(”"res.txt”)

x = pi/4.0;
sum = Xx;

t =x ;
i=1;

/* The following loop evaluates the terms and sums them x/
do{ // i starts at 1; t=0 term is the initial value
t ox= (xxx) / ((2%i41)*(2%1));
sum += t;
i +=1;
}
while (fabs(t/s) > acc);
fp << i << "\t7 << t << "\t’ << sum << \t’ << sin(x) << endl;
fp.close ()
return 0;

(©) 2024 Nitesh Kumar. All rights reserved. 14



Chapter 2. Finite and Infinite Series

Problems

1. Write a program to evaluate the sum up to 20 terms of the series

1 1 1 1
+J?2+E+E+.“

for a given z(0 < x < 2), and compare your result with the analytic sum of the

series.

2. Evaluate cos(x) using the series

accurate to four significant places. Plot cos(z) vs x in the range 0 < z < 7.

3. Write a program to evaluate .J,,(x) to an accuracy of four significant figures using
the following series expansion:

2 n+k)

e (0 (2)
T = (3) ZWA

Plot J,(x) against = for 0 < z < 10 and n = 0,1,2. Compare with the known
behaviour of these functions and explain the discrepancy at large x.

4. Evaluate F'(z) given by

(_1)n7r2n Z4n+1

F(Z)ZCOS<%Z2)§:1><5><9---(4n+1)

n=0

correct to four significant figures, for 0 < z < 1, at intervals of 0.1.

5. Write a program to plot the sum of the following series:

0 k
f(z,m) = Y
kg%Awwkmr(§+j%)

for n = 2 and z in the range 0 < z < 5. You would require the following relations:

[(z+1) =2I'(2)

6. Write a program to plot the following function:

23 1 x 428 1x4x727
3! T 9! T

ﬂ@:C(L%—+

where C' = 0.35503, for z in the range —10 < z < 0, at intervals of 0.05.

(©) 2024 Nitesh Kumar. All rights reserved. 15
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Chapter 3

Matrix multiplication

3.1

C++ Code for Dot Product of Two 3x3 Matrices

The following C++ code computes the dot product of two 3x3 matrices:

1 #include <iostream>
using namespace std;

2

N = O

W oW W NN NN NN NN NN
» K= O © W 9 o o

35

// Function to calculate the dot product of two 3x3 matrices
void dotProduct (int matrix1[3][3], int matrix2[3][3], int result [3][3]) {

}

for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
result[i][j] = 0; // Initialize result element to 0
for (int k = 0; k < 3; k++) {
result [i][j] += matrix1[i][k] * matrix2[k][]j];
}

int main() {

int matrix1[3][3], matrix2[3][3], result [3][3];

// Input first 3x3 matrix
cout << "Enter the elements of the first 3x3 matrix:” << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
cin >> matrix1[i][]];
}

}

// Input second 3x3 matrix
cout << ”"Enter the elements of the second 3x3 matrix:” << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
cin >> matrix2[i][j];
}

}

// Call the dotProduct function
dotProduct (matrixl, matrix2, result);

// Display the result

17



Chapter 3. Matrix multiplication

cout << ”"Dot product of the two matrices is:” << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++)
cout << result [1][]j] << 7 7}

}

cout << endl;
}
return 0;

The above code defines the function dotProduct () that computes the dot product of
two 3x3 matrices. It uses nested loops to multiply the matrices and store the result.

3.2 Explanation of void in C++

In C++, the keyword void is used in two main contexts:

3.2.1 As a Return Type for Functions

When void is used as a function’s return type, it indicates that the function does not
return any value. The function executes its operations and exits without giving back any
result to the caller.

For example:

void sayHello() {
cout << "Hello, world!" << endl;

+

In this case, the function sayHello() performs an action (printing ”Hello, world!”)
but does not return anything, so its return type is void.
In the context of the matrix dot product code:

void dotProduct (int matrixi1[3][3], int matrix2[3][3], int result[3][3]) {
// Code to calculate the dot product
+

Here, the dotProduct () function performs matrix multiplication and stores the result in
the result array, but it does not return anything directly. Thus, its return type is void.

3.2.2 As an Empty Argument List

In C++, when void is used in the parameter list of a function, it indicates that the
function takes no arguments. For example:

void functionName(void) {
// Code

(©) 2024 Nitesh Kumar. All rights reserved. 18



Chapter 3. Matrix multiplication

3.3 Fortran Code for Dot Product of a 3x3 Matrix

The following code calculates the dot product of two 3x3 matrices in Fortran:

1 program matrix_dot_product

2 implicit none

3 integer , parameter :: n = 3

| real :: A(n, n), B(n, n), result(n, n)
5 integer :: i, j, k

7 ! Initialize matrices A and B

8 A = reshape ([1.0, 2.0, 3.0, &

9 4.0, 5.0, 6.0, &

10 7.0, 8.0, 9.0], [n, n])
11

12 B = reshape ([9.0, 8.0, 7.0, &

13 6.0, 5.0, 4.0, &

y 3.0, 2.0, 1.0], [n, n])

16 ! Initialize the result matrix to zero
17 result = 0.0

9 ! Perform dot product

1€

20 do i =1, n

21 do j =1, n

22 do k =1, n

23 result (i, j) = result(i, j) + A(i, k) * B(k, j)
24 end do

25 end do

26 end do

27

28 ! Print the result matrix
29 print *, ’Result matrix:’
30 do i = 1, n

31 print %, result(i, :)
32 end do

32 end program matrix_dot_product

This code defines two 3x3 matrices A and B, performs the dot product, and stores the
result in the matrix result. The final result is printed row by row.

(©) 2024 Nitesh Kumar. All rights reserved. 19



Chapter 3. Matrix multiplication

(©) 2024 Nitesh Kumar. All rights reserved.

20



Chapter 4

Prime numbers and Fibonacci Series

4.1

C++ Code for Finding a Set of Prime Numbers

The following C++ code finds and prints prime numbers up to a specified limit using the
Sieve of Eratosthenes algorithm:

1 #include <iostream>
#include <vector>
using namespace std;

2

00 [ = [

WO NN N NN NN NN
2 b o Pt 2

& 0

void findPrimes(int limit) {

}

vector<bool> isPrime (limit + 1, true);
isPrime [0] = isPrime[l] = false;

for (int p = 2; p * p <= limit; ++p) {
if (isPrime[p]) {
for (int i =
isPrime [ i

}

alse ;

p * p; i <= limit; i +4=p) {
| =

}

// Print all prime numbers
cout << ”Prime numbers up to 7 << limit << 7 are: \n”;
for (int p = 2; p <= limit; ++p) {
if (isPrime[p]) {
cout << p << 7 7
}
}

cout << endl;

7 int main() {

int limit;

cout << ”Enter the upper limit: 7;
cin >> limit;

findPrimes (limit ) ;

return 0;

This code defines a function findPrimes that uses a boolean vector to mark non-

prime numbers. It prints all prime numbers up to the user-specified limit. The Sieve of
Eratosthenes algorithm efficiently identifies the prime numbers by iterating over multiples

21



Chapter 4. Prime numbers and Fibonacci Series

of known primes.

4.2 C++4 Code for Printing the Fibonacci Series

The following C++ code generates and prints the Fibonacci series up to a specified

number of terms:

1 #include <iostream>
2 using namespace std;

1+ void printFibonacci(int terms) {
5 int first = 0, second = 1, next;

7 cout << ”Fibonacci Series:

;

8 for (int i = 0; i < terms; i++) {

9 it (i <=1) {

10 next = i; // First two terms are 0 and 1

1 } else {

12 next = first + second; // Next term is the sum of the previous
two

13 first = second; // Update first

14 second = next; // Update second

15 }

16 cout << mnext << ” ”7; // Print the current term

17 }

18 cout << endl;

19 }

int main() {
int terms;
cout << "Enter the number of terms: 7;
cin >> terms;
printFibonacci(terms) ;
return 0;

NN NN
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—

This code defines a function printFibonacci that calculates and displays the Fi-
bonacci series. It uses a loop to compute each term based on the previous two terms,

starting with 0 and 1. The user specifies how many terms of the series to print.
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Chapter 5

Experiment No. 09: Finding the
Roots of a Quadratic Equation

5.1 Theory

A quadratic equation is a second-order polynomial equation in a single variable with the
form:
ar? +br+c=0

where a, b, and ¢ are constants. The roots of a quadratic equation can be found using

the quadratic formula:
—b+ Vb? — 4ac
Tr =
2a

These roots may be real or complex depending on the discriminant A = % — 4ac.

5.2 Concepts

The roots of the quadratic equation are derived from the discriminant:
e If A > 0, the equation has two distinct real roots.
e If A =0, the equation has exactly one real root (a repeated root).

o If A <0, the equation has two complex roots.

5.3 Formulas
_cbvA b= VA

2a 2= 2a

where A = b? — 4ac is the discriminant.

A

54 C++ Code

The following C++ program solves the quadratic equation using the quadratic formula:
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Chapter 5. Finding the Roots of a Quadratic Equation

1 // C++ program to find roots of a quadratic equation
2 #include <iostream>
3 #include <cmath>

!

using namespace std;

int main() {

double a, b, ¢, discriminant, rootl, root2;

// Input coefficients
cout << ”"Enter coefficients a, b, and c: ”;
cin >> a >> b >> c¢;

discriminant = bxb — 4xaxc;

if (discriminant > 0) {
// Two real and distinct roots
rootl = (—b 4+ sqrt(discriminant)) / (2xa);
root2 = (—b — sqrt(discriminant)) / (2xa);
cout << "Roots are real and different.” << endl;

cout << "Root 1 =7 << rootl << endl;
cout << "Root 2 =7 << root2 << endl;
} else if (discriminant = 0) {

// One real root
rootl = —b / (2xa);
cout << "Root is real and repeated.” << endl;
cout << "Root = 7 << rootl << endl;
} else {
// Complex roots
double realPart = —b / (2xa);
double imaginaryPart = sqrt(—discriminant) / (2xa);
cout << ”Roots are complex and different.” << endl;

cout << "Root 1 =7 << realPart << 7 + 7 << imaginaryPart <<

endl;

cout << "Root 2 =7 << realPart << 7 — 7 << imaginaryPart <<

endl ;
}

return 0;

b2

b2

b

1

b

1

<<

<<

This experiment demonstrates how to calculate the roots of a quadratic equation
by analyzing the discriminant and solving for both real and complex roots using the
quadratic formula.
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Chapter 6

Finding the Roots of a Polynomial
Equation Using Bisection and Other
Methods

A polynomial equation of the form:
f(@)=anz™ +ap 12"+ Faxr+ag=0

has real or complex roots depending on the coefficients and degree of the polynomial.
Numerical methods such as the Bisection method and the Newton-Raphson method are
commonly used to find real roots when an analytical solution is difficult to obtain.

6.1 Bisection Method

The Bisection method is a simple and robust numerical technique to find roots of a
continuous function f(x) on an interval [a, b] where f(a) and f(b) have opposite signs (i.e.,
f(a)f(b) < 0). - The method repeatedly bisects the interval and selects the subinterval
in which the sign of the function changes. - The root is approximated as the midpoint of
the interval when the interval becomes sufficiently small.

The iterative formula for Bisection is:

a+b
2

Tmid =

If f(xmia) =0, then z,,;4 is the root; otherwise, continue with the subinterval where the
function changes its sign.

6.1.1 Steps of the Bisection Method

The Bisection method follows these steps:

1. Choose the initial interval [a,b] such that f(a) and f(b) have opposite signs,
meaning f(a)f(b) < 0.

2. Compute the midpoint of the interval:

a+b
2

Lmid =
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/()

Initial [interval [a, ]

Next inferyal [a, Tmid]

Figure 6.1: Tllustration of the Bisection method using the function f(z) = 23 — 922 +
23z — 15. The method starts with the interval [a, b], then iteratively bisects the interval
to find the root by checking sign changes in f(x).

3. Evaluate the function at the midpoint f(2,,;q).

4. Check if the root has been found:

o If f(zmiq) =0, then z,,4 is the root.
o If f(Zmia) # 0, check the sign of f(z,4) and proceed as follows:
— If f(a)f(zmia) < 0, then the root lies in the subinterval [a, zq4]. Set

b= Trmid-
— If f(b)f(zmia) < O, then the root lies in the subinterval [z,,q,b]. Set
a4 = Tmid-

5. Repeat the process until the interval becomes sufficiently small, i.e., |b — a is
less than a pre-specified tolerance level.

6.1.2 Disadvantages of the Bisection Method

While the Bisection method is reliable and simple, it has several limitations:
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e Slow Convergence: The Bisection method converges linearly, which makes it
slower compared to other methods such as Newton-Raphson that converge quadrati-
cally. This can be a disadvantage when higher accuracy is needed in fewer iterations.

e Requires an Interval with Opposite Signs: The method requires the initial
interval [a, b] to satisfy f(a)f(b) < 0, meaning that a sign change between f(a) and
f(b) is essential. If no such interval is known, the method cannot be applied.

e Not Suitable for Multiple or Complex Roots: The Bisection method can
only find one real root within an interval, and it does not work for complex roots or
multiple roots within the same interval unless the function is redefined or additional
methods are employed.

e Cannot Handle Discontinuous Functions: The method assumes the function is
continuous over the interval [a, b]. If the function has discontinuities, the Bisection
method might fail or produce incorrect results.

1 // C++ program to find the root of a polynomial using Bisection and Newton—
Raphson methods

2 #include <iostream>

3 #include <cmath>

1+ #include <fstream>

5 using namespace std;

7 // Define the polynomial function f(x) = x"3 — x — 2
s double f(double x) {

9 return x*xxxx — x — 2;

10 }

12 // Bisection method to find root
3 double BisectionMethod (double a, double b, double tol, ofstream &outfile) {
14 double mid;

15 int iterations = 0;

16 outfile << "# Iteration\tBisection_ Root” << endl;
17 while ((b — a) >= tol) {

18 mid = (a + b) / 2.0;

19 outfile << iterations << "\t” << mid << endl;
20 if (f(mid) = 0.0) // Exact root found

21 break ;

22 else if (f(mid) * f(a) < 0)

23 b = mid;

24 else

25 a = mid;

26 iterations++;

27 }

28 return mid;

ZU}

30

31 int main() {

32 double a, b, x0, tol;

33

34 // Open file to store the output

35 ofstream outfile ("roots_output.txt”);

36

37 // Input interval for Bisection

38 cout << ”Enter the interval [a, b] for Bisection method: 7;
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cin >> a >> b;

// Input initial guess for Newton—Raphson
cout << "Enter the initial guess for Newton—Raphson method: 7 ;
cin >> x0;

// Input tolerance level
cout << 7 Enter the tolerance level: 7;
cin >> tol;

// Finding root using Bisection Method
double bisection_root = BisectionMethod(a, b, tol, outfile);

return 0;

}

6.1.3 Secant Method

The Secant method is a numerical technique used to find the root of a function f(x)
by using a secant line to approximate the function near the root. Unlike the Bisection
method, the two initial points for the Secant method do not need to lie on opposite sides
of the root, but they must be sufficiently close to it. However, choosing points on opposite
sides of the root often improves the stability of the method.

The Secant method uses two initial points, x; and 5, and approximates the function
by a straight line passing through these two points. The root is then estimated as the
x-intercept of this secant line. The equation of the secant line passing through the points

(1, f(x1)) and (x2, f(x2)) is given by:
fx2) — f(z1)

To — X1 (x B x2)

y— flz2) =
Setting y = 0 to find the x-intercept (the approximation of the root), we get:

f(xz) - f(iﬁ)

To — I (x3 B -772)

0— f(l'g) =

Solving for z3, the next approximation of the root is:

T f(xz)f(xz) — f(x1)

This formula is iterated with the newly found point z3 replacing x;, and x5 replacing
x3 in subsequent steps. The process is repeated until the values of x,, converge to a root
with the desired level of accuracy.

Steps of the Secant Method

1. Choose two initial points x; and x5 close to the expected root.
2. Evaluate f(z1) and f(x2).

3. Compute the next approximation of the root using the formula:

To — I

f(x2) — f(m1)
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4. Replace 1 with x5 and xs with x3, then repeat the process until |z, — 2| is less

than a specified tolerance.

5. Stop when the root is approximated to the desired level of accurac

Advantages and Disadvantages of the Secant Method

e Advantages:

Y.

— The Secant method often converges faster than the Bisection method.

— It does not require the calculation of the derivative of the function, unlike the

Newton-Raphson method.

e Disadvantages:

— The Secant method may fail to converge if the initial points are not close to

the root or if the function behaves poorly in the region.

— It has a lower order of convergence compared to Newton-Raphson (superlinear

vs. quadratic).

— It is less reliable than the Bisection method because it does not guarantee

convergence if the initial points are not well chosen.

C++ Code

| #include <iostream>
2 #include <cmath>
3 #include <fstream>

5

o

~

NN N NN

[0

using namespace std;

// Define the function whose root we want to find, e.g., f(x)
double f(double x) {

return x * X * x — x — 2;
}

// Secant method implementation

double SecantMethod (double x0, double x1, double tol, ofstream &outfile) {

double x2, f x0, f.x1, diff;
int iterations = 0;

outfile << 7# Iteration\tSecant_Root_Estimate” << endl;
do {

fx0 = f(x0); // f(x0)
fx1 = f(x1); // f(x1)

if (fabs(f-x1 — f_x0) < tol) { // Check for division by zero or

near zero difference

cout << ”"Error: Division by zero or very small difference

between function values.” << endl;
return NAN;

// Compute next approximation using the secant formula

x2 = x1 — fx1 % (x1 — x0) / (f.x1 — f_x0);

(©) 2024 Nitesh Kumar. All rights reserved.
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diff = fabs(x2 — x1); // Difference between current and next

approximation

outfile << iterations << "\t” << x2 << endl;

// Update x0 and x1 for the next iteration

x0 = x1;
x1l = x2;
iterations++;

} while (diff >= tol); // Continue until the difference is

the tolerance

return x2; // The root estimate

}

int main() {
double x0, x1, tol;

// Open file to store the output

ofstream outfile ("roots_output_secant.txt”);

// Input initial guesses for Secant Method
cout << ”Enter the first initial guess: 7;

cin >> x0;

cout << ”Enter the second initial guess:

cin >> x1;
// Input tolerance level
cout << ”"Enter the tolerance level:

cin >> tol;

// Finding root using Secant Method

double root = SecantMethod (x0, x1, tol,

7

”» .

)

outfile.close(); // Close the output file

if (!isnan(root)) {

”» .

)

outfile);

cout << "Root found: 7 << root << endl;
cout << ”"Results written to roots_output_secant

visualization in GNUPlot.” << endl;

} else {

cout << ”Failed to find a root due to

}

return 0;

6.1.4 Newton-Raphson Method

numerical

.txt for

issues

less than

.7 << endl;

This method takes advantage of the Taylor’s series expansion of a function. The Newton-
Raphson method is an efficient root-finding algorithm that requires the function and its
derivative. Starting from an initial guess z(, the next approximation is given by:

Tp+l = Tp —

(©) 2024 Nitesh Kumar. All rights reserved.
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The method converges quadratically if the initial guess is sufficiently close to the root.

6.2 C++ Code

The following C++ program implements both the Bisection method and the Newton-
Raphson method to find the roots of a given polynomial function. The results are written
to a file for visualization in GNUPlot.

1 // C++ program to find the root of a polynomial using Bisection and Newton—
Raphson methods

2 #include <iostream>

3 #include <cmath>

4+ #include <fstream>

5 using namespace std;

7 // Define the polynomial function f(x) = x"3 — x — 2
s double f(double x) {

9 return xxx*xx — x — 2;

10 }

11

12 // Define the derivative of the polynomial f’(x) = 3x"2 — 1
13 double df(double x) {

14 return 3xx*xx — 1;

15 }

17 // Bisection method to find root

s double BisectionMethod (double a, double b, double tol, ofstream &outfile) {
19 double mid;

) int iterations = 0;

N

21 outfile << "# Iteration\tBisection_ Root” << endl;
22 while ((b — a) >= tol) {

23 mid = (a + b) / 2.0;

24 outfile << iterations << "\t” << mid << endl;
25 if (f(mid) = 0.0) // Exact root found

26 break;

27 else if (f(mid) * f(a) < 0)

28 b = mid;

29 else

30 a = mid;

31 iterations++;

32 }

33 return mid;

34 }

36 // Newton—Raphson method to find root

37 double NewtonRaphsonMethod (double x0, double tol, ofstream &outfile) {
38 double x = x0, h;

39 int iterations = 0;

10 outfile << 7# Iteration\tNewton_Raphson_Root” << endl;

11 while (fabs(f(x)) >= tol) {

42 h = f(x) / df(x);

43 outfile << iterations << "\t” << x << endl;

14 X = x — h;

15 iterations++;

16 }

47 return x;
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int main() {

double a, b, x0, tol;

// Open file to store the output
ofstream outfile ("roots_output.txt”);

// Input interval for Bisection
cout << ”Enter the interval [a, b] for Bisection method: 7;
cin >> a >> b;

// Input initial guess for Newton—Raphson
cout << "Enter the initial guess for Newton—Raphson method: 7 ;
cin >> x0;

// Input tolerance level
cout << ”Enter the tolerance level: 7;
cin >> tol;

// Finding root using Bisection Method
double bisection_root = BisectionMethod(a, b, tol, outfile);

// Finding root using Newton—Raphson Method
double newton_raphson_root = NewtonRaphsonMethod (x0, tol, outfile);

outfile.close ();
cout << "Roots written to roots_output.txt for visualization in GNUPIlot

.7 << endl;

return 0;

6.3 GNUPIlot Script

The following GNUPIlot script reads the data from the file generated by the C++ program
and plots the convergence of the root-finding methods.

# roots_plot.gp — GNUPIlot script to plot roots found using Bisection and

SIell
set
set
set
set

Newton—Raphson methods

title "Root Finding using Bisection and Newton—Raphson Methods”
xlabel ”"Iterations”

ylabel ”Root Estimate”

grid

key outside

# Plot the roots convergence

plot

)

"roots_output.txt” using 1:2 with lines title ”Bisection Method” , \
"roots_output.txt” using 1:3 with lines title ”Newton—Raphson Method”

In this experiment, we implemented two numerical methods, Bisection and Newton-

Raphson, to find the roots of a polynomial equation. The Bisection method is simple but
slower, while the Newton-Raphson method converges faster when a good initial guess is
provided. The solutions were visualized using GNUPlot to compare the convergence of
both methods.
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Chapter 7

Experiment No. 10: Motion of a
Projectile

7.1 Theory

Projectile motion is a form of motion in which an object is thrown near the Earth’s
surface, and it moves along a curved path under the action of gravity. The horizontal
and vertical components of the motion are independent of each other. The horizontal
motion is uniform (constant velocity), and the vertical motion is uniformly accelerated
(constant acceleration due to gravity).

7.2 Concepts
The equations of motion for the projectile are:

e Horizontal displacement:
x = vy cos(0)t

Vertical displacement:

1
y = v sin(f)t — §gt2

e Time of flight:
T 2vg sin(6)
g
e Maximum height:
o v2 sin?(0)

e Range:
R vg sin(26)

g
where vy is the initial velocity, € is the angle of projection, ¢ is the acceleration due to
gravity, and ¢ is the time.
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7.3 C++ Code

The following C++ program simulates the motion of a projectile and stores the output
into a file that can be visualized using GNUPIlot:

1 // G+ program to simulate the motion of a projectile and write output to a

file

2 #include <iostream>
3 #include <fstream>

. #include <cmath>

5 using namespace std;

20
21
22
23
24

25

26

27

29

int main() {

double v0, theta, g = 9.81, t, x, y;

// Open file to store the output
ofstream outfile (" projectile_data.txt”);

// Input initial velocity and angle

cout << "Enter initial velocity (m/s): 7;

cin >> v0;

cout << ”Enter angle of projection (degrees): ”;
cin >> theta;

// Convert angle to radians
theta = theta *+ M_PI / 180.0;

// Calculate time of flight , maximum height , and range
double T = (2 % v0 % sin(theta)) / g;

double H = (v0 % v0 % sin(theta) * sin(theta)) / (2 * g);
double R = (v0 * v0 * sin(2 * theta)) / g;

// Write header for the file
outfile << 7# Time (s)\tX—Position (m)\tY—Position (m)” << endl;

// Simulate the motion and write to file
for (t =0; t<=T; t += 0.1) {
x = v0 * cos(theta) * t;
y = v0 * sin(theta) * t — 0.5 % g x t * t;
if (y < 0) y=0; // Ensure y doesn’t go below ground level
outfile << t << "\t”7 << x << "\t\t” << y << endl;

}

outfile.close ();
cout << ”"Data written to projectile_data.txt for visualization in
GNUPlot.” << endl;

return 0;

7.4 GNUPIlot Script

The following GNUPIlot script reads the data from the file generated by the C++ program
and plots the trajectory of the projectile:

# projectile_plot.gp — GNUPlot script to plot projectile motion
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set title ”Projectile Motion”
set xlabel ?X-Position (m)”

5 set ylabel "Y-Position (m)”
set grid

set key off

9 # Plot the data from the file

plot ”projectile_data.txt” using 2:3 with linespoints title ”Projectile
Trajectory”

7.5 Conclusion

This experiment simulated the motion of a projectile under the influence of gravity. The
trajectory was visualized using GNUPIlot by plotting the horizontal and vertical positions.
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Chapter 8

Experiment No. 11: Motion of a
Simple Harmonic Oscillator

8.1 Theory

A simple harmonic oscillator (SHO) experiences a restoring force proportional to its
displacement from its equilibrium position. The motion of the SHO can be described by
the second-order differential equation:
.,
— twz=0
dt?
where z(t) is the displacement, and w = \/% is the angular frequency.
The general solution to this equation is:

z(t) = Acos(wt + ¢)

where A is the amplitude and ¢ is the phase angle.

8.2 C++ Code

The following C+-+ program simulates the motion of a simple harmonic oscillator and
stores the output into a file for visualization in GNUPIlot:
// C++ program to simulate the motion of a simple harmonic oscillator and

write output to a file
#include <iostream>

3 #include <fstream>

#include <cmath>

5 using namespace std;

int main() {
double A, omega, t, x, v, a, T;

// Open file to store the output
ofstream outfile (”sho_data.txt”);

// Input amplitude and angular frequency

cout << ”Enter amplitude (meters): 7;
cin >> A;
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cout << ”Enter angular frequency (rad/s): 7;
cin >> omega;

// Calculate period of oscillation
T =2 x MPI / omega;
cout << ”"Period of oscillation: 7 << T << 7 seconds” << endl;

// Write header for the file
outfile << 7# Time (s)\tDisplacement (m)\tVelocity (m/s)\tAcceleration
(m/s"2)” << endl;

// Simulate the motion and write to file
for (t =0; t <=2 *T; t += 0.1) {
x = A % cos(omega % t);
v = —A % omega * sin(omega * t);
a = —A % omega * omega * cos(omega * t);
outfile << t << "\t”7 << x << "\t\t7 << v << "\t\t” << a << endl;

}

outfile.close ();
cout << ”"Data written to sho_data.txt for visualization in GNUPlot.” <<
endl;

return 0;

8.3 GNUPIlot Script

The following GNUPIlot script reads the data from the file generated by the C++ program
and plots the displacement, velocity, and acceleration of the simple harmonic oscillator:

# sho_plot.gp — GNUPIlot script to plot the motion of a simple harmonic

S@
set
set
set
SIElb

oscillator

title ”Simple Harmonic Oscillator Motion”
xlabel ”Time (s)”

ylabel ”Displacement / Velocity / Acceleration”
grid

key outside

# Plot displacement , velocity , and acceleration from the file
plot ”sho_data.txt” using 1:2 with lines title ”Displacement (m)”, \

"sho_data.txt” using 1:3 with lines title ”Velocity (m/s)”, \
"sho_data.txt” using 1:4 with lines title ” Acceleration (m/s"2)”

8.4 Conclusion

The numerical simulation of a simple harmonic oscillator was performed, and the dis-
placement, velocity, and acceleration were visualized using GNUPIlot.
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Experiment No. 12: Motion of a
Particle in a Central Force Field

9.1 Theory

A central force field is one where the force acting on a particle is always directed towards
a fixed point and depends only on the distance of the particle from that point. Such
forces include gravitational and electrostatic forces. The motion of a particle under a
central force can be described using polar coordinates.

The equation of motion for a particle under a central force F'(r) is given by:

d2r do\®  F(r)

_ 7 - _ 7

dt? dt m
where r(t) is the radial distance, 6(t) is the angular displacement, m is the mass of the
particle, and F'(r) is the central force.

For this experiment, we will assume the particle is under an inverse square law force,

such as gravity:
GMm

r2
where G is the gravitational constant and M is the mass of the central body.

F(r) =

9.2 C++ Code

The following C++ program simulates the motion of a particle in a central force field
and stores the output into a file for visualization in GNUPIlot:

1 // C++ program to simulate the motion of a particle in a central force
field and write output to a file

2 #include <iostream>

3 #include <fstream>

. #include <cmath>

5 using namespace std;

7 int main() {

8 // Constants

9 const double G = 6.67430e—11; // Gravitational constant (m"3/kg/s"2)
10 double M, m, r, theta, t, v_.r, v_theta, a_.r, a_theta, delta_t;
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// Open file to store the output
ofstream outfile (”central_force_data.txt”);

// Input parameters

cout << ”Enter mass of central body (kg): 7;

cin >> M;

cout << 7 Enter
cin >> m;

cout << " Enter
cin >> r;

cout << ”Enter
cin >> theta;
cout << 7 Enter
cin >> v_r;
cout << ”Enter
cin >> v_theta;

cout << ”Enter time step for simulation (s): 7;

cin >> delta_t;

mass of

initial

initial

initial

initial

ki

particle (kg): 7;
radial distance (m): 7;

angular displacement (radians): 7;
radial velocity (m/s): 7;

angular velocity (rad/s): 7;

”

// Write header for the file
outfile << 7# Time (s)\tRadial Distance (m)\tAngular Displacement (rad)

7 << endl;

// Time integration loop (Euler method)
for (t = 0; t <= 1000; t += delta_t) {
// Calculate accelerations
double Fr = -G+« Msx*xm / (r « vr); // Gravitational force
ar = Fr /m+ r x v_theta x v_theta; // Radial acceleration
a_theta = —2 % v_r * v_theta / r; // Angular acceleration

// Update velocities
v.r += a_r % delta_t;
v_theta += a_theta x delta_t;

// Update position

r += v_r x delta_t;

theta += v_theta *x delta_t;

// Write to file
outfile << t << "\ t”7 << 1 << "\t\t”7 << theta << endl;

// Stop simulation if particle crashes into the central body
if (r <= 0) break;

}

outfile.close ();

)

cout << "Data written to central_force_data.txt for visualization in
GNUPIlot.” << endl;

return 0;

9.3 GNUPIlot Script

The following GNUPlot script reads the data from the file generated by the C++4 program
and plots the radial distance as a function of time and the angular displacement.
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# central_force_plot.gp — GNUPlot script to plot the motion of a particle
in a central force field

set title ”"Motion of a Particle in a Central Force Field”
set xlabel ”"Time (s)”

set ylabel "Radial Distance (m)”

set grid

set key outside

# First , plot radial distance as a function of time
set multiplot layout 2,1 title ”Particle Motion in Central Force Field”

plot 7central_force_data.txt” using 1:2 with lines title ”Radial Distance
vs Time”

# Now, plot angular displacement as a function of time
set xlabel ”Time (s)”
set ylabel ”Angular Displacement (rad)”

)

"central_force_data.txt” using 1:3 with lines title ”Angular

”

plot
Displacement vs Time

unset multiplot

9.4 Conclusion

This experiment simulated the motion of a particle under the influence of a central force,
such as gravity. The simulation outputs the radial and angular positions of the particle
over time, which are visualized using GNUPlot.
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Chapter 10

Experiment No. 13: Approximation
of Functions Using Lagrange and
Newton’s Divided Difference
Schemes

10.1 Theory

Polynomial interpolation is a method of estimating values between known data points.
Two common methods of polynomial interpolation are the Lagrange interpolation and
Newton’s divided difference interpolation.

10.1.1 Lagrange Interpolation Formula

Given n + 1 data points (zo, yo), (z1,91), - - -, (Tn, Yn), the Lagrange interpolation polyno-
mial is given by:

L(z) = Zyz’&(l‘)

where /;(x) is the Lagrange basis polynomial defined as:

xr—XT;
_ J
)= [ —
0<j<n ™" J

j#i

10.1.2 Newton’s Divided Difference Formula

The Newton’s divided difference formula uses divided differences to compute the inter-
polation polynomial incrementally. The interpolation polynomial is given by:

P(x) = flzo] + flzo, z1](x — o) + flzo, z1, Z2)(x — 20)(x — 1) + . ..

where f|xo], f[xo, z1], ... are divided differences, calculated as:
_ f[Ii+1, e >$i+k] - f[fi, e >Ii+k—1]
floa Tivs - Tigs] =
Litk — Ti
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10.2 C++ Code

The following C++ code implements both Lagrange interpolation and Newton’s divided
difference interpolation and writes the approximations to a file for visualization using
GNUPIot.

1 // C++ program to perform Lagrange and Newton’s divided difference
interpolation

2 #include <iostream>

3 #include <fstream>

. #include <vector>

5 using namespace std;

6

~

// Function for Lagrange interpolation
s double Lagrangelnterpolation (double x, vector<double>& X, vector<double>& Y

, int n) {
9 double result = 0.0;
10 for (int i = 0; i < n; i++) {
11 double term = Y[i];
12 for (int j = 0; j < n; j++) {
13 if (j!=1) {

16 }
17 result += term;
18 }

19 return result ;

20 }

22 // Function for Newton’s divided difference interpolation
23 double NewtonInterpolation (double x, vector<double>& X, vector<vector<
double>>& F, int n) {

24 double result = F[0][0];

25 double product = 1.0;

26 for (int i = 1; i < n; i++) {

27 product *= (x — X[i—1]);

28 result += product * F[0][1];
29 }

30 return result ;

31 }

33 // Function to compute divided differences table for Newton’s interpolation
32 void DividedDifferences(vector<double>& X, vector<double>& Y, vector<vector
<double>>& F, int n) {

35 for (int i = 0; i < n; i++) {

36 } F[l][O] :Y[i];

sx for (int j = 1; j < n; j++) {

39 for (int i = 0; i <n — j; i++) {

i0 Fli][j] = (F[i4+1][j-1] = F[i][i-1]) / (X[i+j] — X[i]);

:lﬁi }

5 int main () {

16 int n;

a7 double x;

13 vector<double> X, Y;
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// Open file to store the output
ofstream outfile (”interpolation_data.txt”);

// Input number of data points
cout << ”Enter number of data points: 7;
cin >> n;

X.resize (n);
Y.resize (n);

// Input data points
cout << ”Enter data points (x y):” << endl;
for (int i = 0; i < n; i++) {
cin >> X[i] >> Y[i];
}

// Create divided differences table for Newton’s method
vector<vector<double>> F(n, vector<double>(n, 0.0));
DividedDifferences (X, Y, F, n);

// Write header to file
outfile << "# X\tLagrange Y \tNewton_.Y” << endl;

// Interpolate and store data for visualization

for (x =X[0]; x <= X[n—1]; x += 0.1) {
double L.y = Lagrangelnterpolation(x, X, Y, n);
double N_y = NewtonlInterpolation(x, X, F, n);
outfile << x << "\t”7 << L.y << "\t” << N_y << endl;

}

outfile.close();
cout << ”"Data written to interpolation_data.txt for visualization

GNUPlot.” << endl;

return 0;

10.3 GNUPlot Script

in

The following GNUPlot script reads the data from the file generated by the C++ program
and plots both the Lagrange and Newton’s interpolated functions.

# interpolation_plot.gp — GNUPlot script to plot Lagrange and Newton
interpolation

11

SIElt
S@t
SIell
set
set

title ”Lagrange and Newton Interpolation”
xlabel 7X?”

ylabel 7Y”

grid

key outside

# Plot the Lagrange and Newton interpolation
plot ”interpolation_data.txt” using 1:2 with lines title ”Lagrange

Interpolation”, \

“interpolation_data.txt” using 1:3 with lines title ”Newton

Interpolation”
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10.4 Conclusion

This experiment demonstrated the use of Lagrange and Newton’s divided difference in-
terpolation techniques for approximating functions. The interpolations were visualized

using GNUPIlot to compare the two methods.
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Chapter 11

Experiment No. 14: Numerical
Integration of Functions and
Discrete Data

11.1 Theory

Numerical integration refers to algorithms for computing the numerical value of a definite
integral. While the exact analytical integration of some functions can be difficult or
impossible, numerical methods allow for approximate solutions.

Two common methods of numerical integration are:

1. Trapezoidal Rule

2. Simpson’s Rule

11.1.1 Trapezoidal Rule

The Trapezoidal rule approximates the area under a curve as a series of trapezoids. The
rule is given by:

I~ g (f(a) + f(b) + 2;f(wi>>

—a

where a and b are the limits of integration, h = bT
function values at the grid points.

is the step size, and f(x;) are the

11.1.2 Simpson’s Rule

Simpson’s rule approximates the integral by dividing the interval into an even number of
subintervals and fitting a quadratic polynomial to the subintervals. It is given by:

=t (f(a) IO 44 fa) 2y f<:vz->>

odd i even ¢
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11.2 C++ Code

The following C++ code implements both the Trapezoidal rule and Simpson’s rule for
numerical integration. It writes the integration results for different step sizes to a file for
visualization using GNUPIlot.

1 // C++ program to perform numerical integration using Trapezoidal and
Simpson ’s Rule

2 #include <iostream>

3 #include <fstream>

4 #include <cmath>

5 using namespace std;

7 // Define the function to integrate
s double f(double x) {
9 return sin(x); // Example: f(x) = sin(x)

10 }

12 // Trapezoidal rule implementation

13 double TrapezoidalRule(double a, double b, int n) {
14 double h = (b — a) / n;

15 double sum = f(a) + f(b);

16 for (int i = 1; i < mn; i++) {
17 sum += 2 * f(a + i % h);
18

19 return (h / 2) % sum;

20 }

22 // Simpson’s rule implementation
23 double SimpsonsRule(double a, double b, int n) {

24 if (n% 2 != 0) nt++; // Simpson’s rule requires even number of
intervals

25 double h = (b — a) / n;

26 double sum = f(a) + f(b);

27 for (int i = 1; i < n; i++) {

28 if (i % 2 0)

29 sum += 2 *x f(a + i * h);

30 else

31 sum += 4 x f(a + i * h);

32

33 return (h / 3) x sum;

5 }

36 int main() {
37 int n;

38 double a, b;

40 // Open file to store the output
11 ofstream outfile (”integration_data.txt”);

43 // Input limits of integration and number of intervals
44 cout << ”"Enter lower limit of integration: 7;

45 cin >> a;

16 cout << ”Enter upper limit of integration: 7;

a7 cin >> b;

18 cout << ”Enter number of intervals: 7;

49 cin >> n;
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// Write header to file
outfile << "# N\tTrapezoidal\tSimpson” << endl;

// Calculate and write the results for various numbers of intervals
for (int i = 2; i <=n; 1 += 2) {

double trap_result = TrapezoidalRule(a, b, i);

double simp-_result = SimpsonsRule(a, b, i);

outfile << 1 << "\t” << trap_result << "\t” << simp-_result << endl;

}

outfile.close();
cout << ”"Data written to integration_data.txt for visualization in

GNUPlot.” << endl;

return 0;

11.3 GNUPlot Script

The following GNUPlot script reads the data from the file generated by the C++ program
and plots the results of numerical integration using the Trapezoidal and Simpson’s rules
for different numbers of intervals.

# integration_plot.gp — GNUPlot script to plot Trapezoidal and Simpson’s
rule integration results

set title ”Numerical Integration: Trapezoidal vs Simpson’s Rule”
set xlabel "Number of Intervals (N)”

set ylabel ”Integral Value”

set grid

set key outside

# Plot the Trapezoidal and Simpson’s integration results
plot ”integration_data.txt” using 1:2 with lines title ”Trapezoidal Rule”

\

"integration_data.txt” using 1:3 with lines title ”Simpson’s Rule”

11.4 Conclusion

This experiment demonstrated the use of numerical integration methods, specifically the
Trapezoidal and Simpson’s rules, to approximate definite integrals. The results were
visualized using GNUPlot to compare the performance of both methods as the number
of intervals increases.
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Chapter 12

Experiment No. 15: Solving ODEs
Using Euler and Runge-Kutta (RK)
Methods

12.1 Theory

Ordinary differential equations (ODEs) arise in various physical systems, describing how
a quantity changes with respect to another. Numerical methods, such as Euler’s method
and the Runge-Kutta (RK) methods, provide approximate solutions for ODEs that may
not have analytical solutions.

12.1.1 Euler’s Method

Euler’s method is a simple, first-order numerical procedure for solving an initial value
problem of the form:

y'(x) = fz,y), y(@o)=yo
The formula for updating y is given by:
Ynt1 = Yn + hf(il?n, yn)

where h is the step size, and f(x,,y,) is the derivative evaluated at z,, and y,,.

12.1.2 Runge-Kutta Method (RK4)

The fourth-order Runge-Kutta method (RK4) is a higher-order method for solving ODEs.
The formula for updating y is:

kl = hf<xn7 yn)

h k
kQZh.f ($n+_7yn+_l)

2 2

h ko

ks =nh n oo 9n e
3 f(l’ +2?J+2)

k4 = hf(xn + hayn + kS)

1
Yn+1 = Yn + g(kfl + 2ky + 2k3 + ky)
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12.2 C++ Code

The following C++ code implements Euler’s method and the fourth-order Runge-Kutta
method to solve a first-order ODE and writes the solution to a file for visualization using
GNUPIot.

1 // C++ program to solve ODE using FEuler and RK4 methods
2 #include <iostream>

3 #include <fstream>

4 #include <cmath>

5 using namespace std;

// Define the function f(x, y) = dy/dx
double f(double x, double y) {

}

return x * exp(—x) — y; // Example: dy/dx = xxe"(—x) — y

// Euler’s method implementation
void EulerMethod (double x0, double y0, double h, double x_end, ofstream &

}

outfile) {
double x = x0, y = y0;
outfile << "# X\tEuler .Y \tRK4.Y” << endl;
while (x <= x_end) {
outfile << x << "\t”7 << y << "\t
y +=h = f(X’ Y);
X += h;

// Runge—Kutta 4th Order method implementation
void RK4Method (double x0, double y0, double h, double x_end, ofstream &

}

outfile) {

double x = x0, y = y0;

outfile.seekp(0); // Reset the file position for the next method
outfile.clear (); // Clear the file error flags

while (x <= x_end) {
outfile << y << endl;
double k1 =h  f(x, y)

double k2 = h * f(x + h/2, y + k1/2);
double k3 = h % f(x + h/2, y + k2/2);
double k4 = h x f(x + h, y + k3);

v 4= (1.0/6.0) * (k1 + 2xk2 + 2xk3 + kd);

x += h;

int main() {

double x0, y0O, h, x_end;

// Open file to store the output
ofstream outfile ("ode_solution.txt”);

// Input initial values

cout << ”Enter initial value of x (x0): 7;
cin >> x0;

cout << ”Enter initial value of y (y0): 7;
cin >> yO0;
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cout << ”Enter step size (h): 7;
cin >> h;

cout << ”"Enter final value of x: 7;
cin >> x_end;

// Solve using Euler’s method and Runge—Kutta method
EulerMethod (x0, y0, h, x_end, outfile);
RK4Method (x0, y0, h, x_end, outfile);

outfile.close ();
cout << 7 Solution written to ode_solution.txt for visualization in

GNUPlot.” << endl;

return 0;

12.3 GNUPlot Script

The following GNUPIlot script reads the data from the file generated by the C++ program
and plots the solutions obtained using Euler’s method and the RK4 method.

# ode_plot.gp — GNUPlot script to plot Euler and RK4 solutions

set title ”Solution of ODE using Euler and RK4 Methods”
set xlabel 7X”

set ylabel 7Y”

set grid

set key outside

# Plot the Euler and RK4 solutions
plot 7ode_solution.txt” using 1:2 with lines title ”Euler Method”, \
7ode_solution.txt” using 1:3 with lines title "Runge—Kutta Method”

12.4 Conclusion

This experiment demonstrated the use of numerical methods, specifically Euler’s method
and the fourth-order Runge-Kutta method (RK4), to solve first-order ordinary differential
equations. The solutions were visualized using GNUPlot to compare the accuracy and
stability of the two methods.
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