Introduction to Computational Physics Lab

UPES Dehradun
Introduction to Computational Physics Lab - 2024

Nitesh Kumar

October 10, 2024

Contents

1 Frequency Distribution

2 Finite and Infinite Series
2.1 Introduction
2.2 Finite Series
2.3 Infinite Series

3 Matrix multiplication
3.1 CH+ Code for Dot Product of Two 3x3 Matrices
3.2 Explanation of void in CH++.
3.2.1 As a Return Type for Functions
3.2.2 Asan Empty Argument List
3.3 Fortran Code for Dot Product of a 3x3 Matrix

4 Prime numbers and Fibonacci Series
4.1 CH++ Code for Finding a Set of Prime Numbers
4.2 C++ Code for Printing the Fibonacci Series

CONTENTS

Chapter 1

Frequency Distribution

Step 1: Prepare Your Data

Let’s assume you have a data file named data.txt with raw data points:

10
12

3 10

15

5 17

3 15

5 20

10
12
15
20
15

Step 2: Create the Frequency Distribution and Save
it to a File

Use a shell command to generate the frequency distribution and save it in a file named
freq_data.txt:

$ sort data.txt | uniq —c | awk ’{print $2, $1}’ > freq_data.txt

Explanation:
e sort data.txt: Sorts the data.
e uniq -c: Counts the frequency of each unique value.

e awk ’{print $2, $1}’: Reorders the output so that the value appears first, fol-
lowed by the frequency.

The resulting freq data.txt will look like this:

10
12

17

== W N W

6 CHAPTER 1. FREQUENCY DISTRIBUTION

Step 3: Compile the Frequency Distribution and Eval-
uate Mean and Standard Deviation using Gnuplot

Now, you'll use Gnuplot to calculate the mean and standard deviation from this frequency
distribution.
Create a Gnuplot script calc_stats.gnuplot:

1 # calc_stats.gnuplot

3 # Load the frequency distribution
1 stats 7freq_data.txt” using 1:2 name ”freq” nooutput

6 # Calculate the mean (weighted by frequency)
7 mean = freq_mean_y

9 # Calculate the standard deviation

0o sd = freq_stddev_y

3 print "Mean =", mean

1

1

12 # Print results

1

14 print ”Standard Deviation =", sd

Step 4: Run the Gnuplot Script

Execute the Gnuplot script to calculate and display the mean and standard deviation:

1 $ gnuplot calc_stats.gnuplot
Explanation:

e stats "freq.data.txt" using 1:2 name "freq" nooutput: This command cal-
culates the sum, sum of squares, and other statistical measures from the frequency
distribution.

e mean = freq sumy / freq_sum: Computes the mean by dividing the sum of values
(weighted by their frequency) by the total number of observations.

e sd = sqrt((freq.sum_y2 / freq.sum) - (mean * mean)): Computes the stan-
dard deviation using the variance formula.

Step 5: Output Interpretation

After running the Gnuplot script, it will print the mean and standard deviation to the
console.

Summary

e You first sort your data and generate a frequency distribution using shell commands.
e Save the frequency distribution to a file.

e Use Gnuplot to load the frequency data, compute the mean, and calculate the
standard deviation.

L VR R

For Plotting:

Here’s a complete Gnuplot script that plots the frequency distribution and marks the
mean and standard deviation on the plot. We’ll assume you have your frequency distri-
bution saved in freq_data.txt.

Gnuplot Script: plot with stats.gnuplot

plot_with_stats.gnuplot

Load the frequency distribution data
stats "freq_data.txt” using 1:2 name ”freq” nooutput

; # Calculate mean and standard deviation
; mean = freq_mean_y
: sd = freq_stddev_y

Configure the plot
set title ”Frequency Distribution with Mean and Standard Deviation”
set xlabel ”Value”
; set ylabel ”Frequency”
set style data histograms
5 set style fill solid 0.5 border —1
; set boxwidth 0.9

s # Plot the frequency distribution
o plot 7freq_-data.txt” using 2:xtic(1l) title ”"Frequency” with boxes lc rgb
blue” ; \

77 using (mean):0 title ”"Mean” with lines lw 2 lc rgb 7red”, \

»

)

7”7 using (mean—sd):0 title "Mean — 1 SD” with lines lw 1 lc rgb ”green
dt 2, \

77 using (meantsd):0 title "Mean + 1 SD” with lines lw 1 lc rgb ”green
dt 2

Optional: Show the calculated mean and standard deviation on the plot
5 set label sprintf(”Mean = %.2f{”, mean) at graph 0.02, graph 0.95 textcolor
rgb 7red”

26 set label sprintf(”Standard Deviation = %.2f”, sd) at graph 0.02, graph

0.90 textcolor rgb "green”

 # Replot to ensure labels are included
replot

Step-by-Step Explanation

1. stats "freq.data.txt" using 1:2 name "freq" nooutput: This calculates the
statistics, storing them with the prefix freq_.

2. The mean is calculated as mean = freq_sum.y / freq_sum.

3. The standard deviation is calculated using sd = sqrt((freq_sum_y2 / freq_sum)
- (mean * mean)).

4. Plot settings are configured with set style data histograms, set style fill
solid 0.5 border -1, and set boxwidth 0.9.

8 CHAPTER 1. FREQUENCY DISTRIBUTION

5. The frequency distribution is plotted as a histogram, with the mean and standard
deviation bounds marked by vertical lines.

6. Labels showing the calculated mean and standard deviation are added to the plot.

Running the Script

To execute this script, save it as plot_with_stats.gnuplot and run it with Gnuplot:

1 $ gnuplot —persist plot_with_stats.gnuplot

This script will produce a histogram of your frequency distribution, with the mean
and standard deviation clearly marked.

Chapter 2

Finite and Infinite Series

2.1 Introduction

In physics, we often require to derive the values of few functions such as sin (x), cos
(x),. These functions can be expressed by infinite series, infinite products or continued
ffractions. For example:

72 3 74 o "
e—l+x+§+§+z+ ZOE (2.1)
. I R o £(2n+1)
sin(x) = x — 3 + - — Z 277, 1) (2.2)

n=0

The numerical methods to derive the values of these expressions will be discussed
here.

2.2 Finite Series

Consider the following finite sum of a series:

2 l.3 Qf4 "

x
Sn()—1+$+§+§+z+ +m (23)
Here each term is of the form f—: ;withi=0, 1, 2, ..., n. Aslong as n is a small

number, there is no problem and we can actually evaluate each term and then sum them
up. However, if we wish to find the sum of this series for large n, say n = 20, there is a
serious problem - the computer cannot handle large numbers and 20! is a "very large”
number (~ 2.4 x 1018). So clearly we need to find another way to summing of series with
very large or very small terms.

We overcome this problem by not evaluating individual terms of the series. Instead
we find the ratio of two consecutive terms, ¢; and t;_; . Suppose this ratio is R. Then
t; = Rt;_1 . Since R is usually a small number, it is possible to find all the terms, given
the first term t(, by assigning to ¢ the values 1, 2, 3, By adding these terms we get
the required sum.

10 CHAPTER 2. FINITE AND INFINITE SERIES

In the specific example of the series Eq 2.3 above, we can easily see that

x
i1
tii1 = — 2.5
=) (2:5)
t; T
R = == 2.6
T (2.6)
Therefore, starting with tg = 1, we get
2
. x x
2 3 3
i=3 ty=Rty= -2 = L T (2.9)

32 3x2 6
and so on. We then define a quantity called the j-th partial sum S; as

J
Si=>Y t (2.10)
=0

Note an interesting property of this quantity. Any partial sum is by definition the
sum of the previous partial sum and the term itself. Thus,

5 4
Sy=> ti= (Zt) 15 = Sy + 5 (2.11)
=0 =0

This is a property we can use to sum the series iteratively. Thus, the algorithm for
summing a finite series to a given number of terms is simple.

1. Find ¢ or t; , the first term of the series.

2. Find R, the ratio of the i*" term.

3. Find Sy or 57 , the first partial Sum.

4. From ty or t; and R, find the next term.

5. Add the next term to the first partial Sum to get the second partial Sum.

6. Repeat this process till we get the required partial Sum which is the Sum of the
finite series.

The following program can carry out this process:

! Program for evaluating a finite series
PROGRAM finite_series

IMPLICIT NONE

REAL :: x, t, s

INTEGER :: n, i

PRINT %, ’'Supply x and the number of terms n:

2.2. FINITE SERIES 11

8 I' If n = 20, the last term is x"20 / 19!

9 READ %, x, n

10

11 s = 1.0

12 t = 1.0 ! Initial values of sum s and the first term ¢t

13

14 I The following loop evaluates the terms and sums them

15 DOi=1, n-1 ! i starts at 1; t=0 term is the initial value

16 t =t *x /1 ! x/i is simply the ratio R

17 s =s +t

18 END DO

19

20 PRINT =

21 PRINT %, 'x =", x, "n =", n, ’, sum =", s

22 END PROGRAM finite_series
Here is the same code in C++:

1 /+* Program for evaluating a finite series x/

2 #include <iostream>

3 #include <cmath> // For math functions if needed

1

5 using namespace std;

6

7 int main() {

8 float x, t, s;

9 int n, i;

10

11 cout << ”Supply x and the number of terms n: \n”;

12 /% If n = 20, the last term is x"{20} / 19! %/

13 cin >> x >> n;

14

15 s = 1.0;

16 t = 1.0; // Initial values of sum s and the first term t

17

18 /* The following loop evaluates the terms and sums them x/

19 for (i = 1; i <n; i++) { // i starts at 1; t=0 term is the initial
value

20 t *==x / i; // x/1i is simply the ratio R

21 S += t;

22 }

24 cout << 7\n”;

25 cout << "x =7 << x<< 7" n=" <K< n<”7, sum =7 << scientific << s <<

” \Il” ;

27 return 0;

In this program, the statement s+ = ¢ generates the partial sums Sy(z), S3(z), ...
while tx = % generates the successive terms for : = 1,2,...,n.

Note that the order of the statements tx = £ and s+ = ¢ is important. What
happens if they are interchanged? Note also that the initialization s = 1.0 and
t = 1.0 must be done outside the loop over i. What happens if these are done

within the loop?

12 CHAPTER 2. FINITE AND INFINITE SERIES

Of course, instead of taking the ratio of ¢; and ¢;_;, we could also take the ratio of
t;r1 and ¢;. In this case,

= (2.12)
Lt
) (2.13)
ti
7 (2.14)
ti 1+ 1

Here that ¢ will now start from 0 and the first term is {; = 1. These two methods
are equivalent provided we take care of the initialization of 7 and ¢.

2.3 Infinite Series

Whereas a finite series can always be summed in principle, the sum of an in infinite series
has a meaning only if the series is convergent. So it must be ensured that the series
under consideration is indeed convergent before one embarks on its evaluation. For finite
series, the number of terms to be summed is given in advance. However, in the case of an
infinite series, obviously an infinite number of terms cannot be summed. So how do we
sum an infinite series? The answer lies in the fact that if the series is convergent, then
by definition it means that adding more and more terms to the partial sum, changes the
partial sums by smaller and smaller amounts. Thus, if we decide that we want the sum
of an infinite series to a given accuracy, then we can stop adding the sums. In effect,
what we are doing is actually summing again a finite series though here we do not before
hand how many terms we need to some to achieve the desired accuracy.

To illustrate, consider the simple case of sin(x). We know that this function can be
written as an infinite series,

_ G B 0 2+
and the term becomes: ,
; :L.Qz—i-l
ti =(—1) i) (2.16)
and,
- 20=1)+1
S0,
2
R = - (2.18)
2
S R— (2.19)

(2i + 1)(2)
(2.20)

1
2
3
3

1
5
6
8
9

10

11

2.3. INFINITE SERIES 13

Clearly the first term, t is x. What about s? The initial partial sum is obviously the
initial term. Thus the initial values are t = x =s;i = 1.

We can write a program to sum this series to any number of terms for a given value
of x, say x = /4. We know that the result of sin(r/4) = 0.7071. The program below
will evaluate the series upto increasing number of terms till 10. For each term, we will
print the value of that term and the partial sum.

/* Program for evaluating a finite series x/
#include <iostream>
#include <cmath> // For math functions if needed

#include <fstream>
#define pi 3.14159

7 using namespace std;

int main() {
float x, t, sum;
int n, i;
ofstream fp;
fp.open("res.txt”)

x = pi/4.0;
sum = x
t =x

/* The following loop evaluates the terms and sums them x/
for (i = 1; i < 10; i++) { // i starts at 1; t=0 term is the initial

value

t k= (xxx) / ((2*xi+1)*(2xi));

sum += t;

fp << 1 << "\t7 << t << "\t << sum << '\t’ << sin(x) << endl;
}
fp.close ()

return 0;

You should get the following output in the file:

ti sum Sin(x)
-0.0807453 0.704652 0.707106
0.00249038 0.707143 0.707106
-3.6576e-05 0.707106 0.707106
3.13359e-07 0.707106 0.707106
-1.75723e-09 0.707106 0.707106
6.94838e-12 0.707106 0.707106
-2.041e-14 0.707106 0.707106
4.62864e-17 0.707106 0.707106
-8.34847e-20 0.707106 0.707106

© 00 O U= W N -

Table 2.1: The output file ‘res.txt’.

As you see, this being a very rapidly converging series, after the first four terms, the
partial sum really does not change and so adding more and more terms will not help.
So instead of adding up a large number of terms, we can add a few terms and get the

14 CHAPTER 2. FINITE AND INFINITE SERIES

desired result. Of course, the successive terms after the n = 5 are not really zero but
very small numbers which are being evaluated to zero because the variable defined is a
single precision floating point variable.

So the question is how does one know when to stop adding more and more terms? Or
what is the same thing, how do we check for the desired level of accuracy? Clearly, what
we see from the example above is that if the relative value of the term to be added to a
partial sum is very small compared to the partial sum itself, then it will not change the
partial sum significantly. Thus the quantity that one would want to evaluate and see if
it is small enough is:

tn
Sn—l

If this quantity is smaller than a predetermined value, then we can safely terminate
the series.

accuracy — ‘

/* Program for evaluating a infinite series x/

2 #include <iostream>

s #include <cmath> // For math functions if needed
. #include <fstream>

5 #define pi 3.14159

6

8

9

10

11

12

13

14

15

ST R NG X

I CEE I R CE CE VI
R o N o c w S

7 using namespace std;

int main() {
float x, t, sum, acc=0.0001;
int n, i;
ofstream fp;
fp.open(”"res.txt”)

x = pi/4.0;
sum = Xx;

t =x ;
i=1;

/* The following loop evaluates the terms and sums them x/
do{ // i starts at 1; t=0 term is the initial value
t ox= (xxx) / ((2%i41)*(2%1));
sum += t;
i +=1;
}
while (fabs(t/s) > acc);
fp << i << "\t7 << t << "\t’ << sum << \t’ << sin(x) << endl;
fp.close ()
return 0;

2.3. INFINITE SERIES 15

Problems

1. Write a program to evaluate the sum up to 20 terms of the series

1 1 1 1
+;+E+E+.“

for a given z(0 < x < 2), and compare your result with the analytic sum of the

series.

2. Evaluate cos(x) using the series

accurate to four significant places. Plot cos(z) vs x in the range 0 < z < 7.

3. Write a program to evaluate .J,,(x) to an accuracy of four significant figures using
the following series expansion:

o0

Ta(x) = (WZ—H) &

2 El(n + k)!

Plot J,(x) against = for 0 < z < 10 and n = 0,1,2. Compare with the known
behaviour of these functions and explain the discrepancy at large x.

4. Evaluate F'(z) given by

(_1)n7r2n Z4n+1

F(Z)ZCOS<%Z2)§:1><5><9---(4n+1)

n=0

correct to four significant figures, for 0 < z < 1, at intervals of 0.1.

5. Write a program to plot the sum of the following series:

> k

fem = 2 5o PZ(§+”—’“)

k=0,2,4 2

for n = 2 and z in the range 0 < z < 5. You would require the following relations:

[(z+1) =2I'(2)

6. Write a program to plot the following function:

23 1 x 428 1x4x727

f(Z):C(1+§+ 6l ol

where C' = 0.35503, for z in the range —10 < z < 0, at intervals of 0.05.

16

CHAPTER 2. FINITE AND INFINITE SERIES

Chapter 3

Matrix multiplication

3.1

C++ Code for Dot Product of Two 3x3 Matrices

The following C++ code computes the dot product of two 3x3 matrices:

1 #include <iostream>
using namespace std;

2

N = O

W oW W NN NN NN NN NN
» K= O © W 9 o o

35

// Function to calculate the dot product of two 3x3 matrices
void dotProduct (int matrix1[3][3], int matrix2[3][3], int result [3][3]) {

}

for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
result[i][j] = 0; // Initialize result element to 0
for (int k = 0; k < 3; k++) {
result [i][j] += matrix1[i][k] * matrix2[k][]j];
}

int main() {

int matrix1[3][3], matrix2[3][3], result [3][3];

// Input first 3x3 matrix
cout << "Enter the elements of the first 3x3 matrix:” << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
cin >> matrix1[i][]];
}

}

// Input second 3x3 matrix
cout << ”"Enter the elements of the second 3x3 matrix:” << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
cin >> matrix2[i][j];
}

}

// Call the dotProduct function
dotProduct (matrixl, matrix2, result);

// Display the result

17

18 CHAPTER 3. MATRIX MULTIPLICATION

cout << ”"Dot product of the two matrices is:” << endl;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++)
cout << result [1][]j] << 7 7}

}

cout << endl;
}
return 0;

The above code defines the function dotProduct () that computes the dot product of
two 3x3 matrices. It uses nested loops to multiply the matrices and store the result.

3.2 Explanation of void in C++

In C++, the keyword void is used in two main contexts:

3.2.1 As a Return Type for Functions

When void is used as a function’s return type, it indicates that the function does not
return any value. The function executes its operations and exits without giving back any
result to the caller.

For example:

void sayHello() {
cout << "Hello, world!" << endl;

+

In this case, the function sayHello() performs an action (printing ”Hello, world!”)
but does not return anything, so its return type is void.
In the context of the matrix dot product code:

void dotProduct (int matrixi1[3][3], int matrix2[3][3], int result[3][3]) {
// Code to calculate the dot product
+

Here, the dotProduct () function performs matrix multiplication and stores the result in
the result array, but it does not return anything directly. Thus, its return type is void.

3.2.2 As an Empty Argument List

In C++, when void is used in the parameter list of a function, it indicates that the
function takes no arguments. For example:

void functionName(void) {
// Code

3.3. FORTRAN CODE FOR DOT PRODUCT OF A 3X3 MATRIX 19

3.3 Fortran Code for Dot Product of a 3x3 Matrix

The following code calculates the dot product of two 3x3 matrices in Fortran:

1 program matrix_dot_product

2 implicit none

3 integer , parameter :: n = 3

| real :: A(n, n), B(n, n), result(n, n)
5 integer :: i, j, k

7 ! Initialize matrices A and B

8 A = reshape ([1.0, 2.0, 3.0, &

9 4.0, 5.0, 6.0, &

10 7.0, 8.0, 9.0], [n, n])
11

12 B = reshape ([9.0, 8.0, 7.0, &

13 6.0, 5.0, 4.0, &

y 3.0, 2.0, 1.0], [n, n])

16 ! Initialize the result matrix to zero
17 result = 0.0

9 ! Perform dot product

1€

20 do i =1, n

21 do j =1, n

22 do k =1, n

23 result (i, j) = result(i, j) + A(i, k) * B(k, j)
24 end do

25 end do

26 end do

27

28 ! Print the result matrix
29 print *, ’Result matrix:’
30 do i = 1, n

31 print %, result(i, :)
32 end do

32 end program matrix_dot_product

This code defines two 3x3 matrices A and B, performs the dot product, and stores the
result in the matrix result. The final result is printed row by row.

20

CHAPTER 3. MATRIX MULTIPLICATION

Chapter 4

Prime numbers and Fibonacci Series

4.1

C++ Code for Finding a Set of Prime Numbers

The following C++ code finds and prints prime numbers up to a specified limit using the
Sieve of Eratosthenes algorithm:

1 #include <iostream>
#include <vector>
using namespace std;

2

00 [= [

WO NN N NN NN NN
2 b o Pt 2

& 0

void findPrimes(int limit) {

}

vector<bool> isPrime (limit + 1, true);
isPrime [0] = isPrime[l] = false;

for (int p = 2; p * p <= limit; ++p) {
if (isPrime[p]) {
for (int i =
isPrime [i

}

alse ;

p * p; i <= limit; i +4=p) {
| =

}

// Print all prime numbers
cout << ”Prime numbers up to 7 << limit << 7 are: \n”;
for (int p = 2; p <= limit; ++p) {
if (isPrime[p]) {
cout << p << 7 7
}
}

cout << endl;

7 int main() {

int limit;

cout << ”Enter the upper limit: 7;
cin >> limit;

findPrimes (limit) ;

return 0;

This code defines a function findPrimes that uses a boolean vector to mark non-

prime numbers. It prints all prime numbers up to the user-specified limit. The Sieve of
Eratosthenes algorithm efficiently identifies the prime numbers by iterating over multiples

21

22

CHAPTER 4. PRIME NUMBERS AND FIBONACCI SERIES

of known primes.

4.2 C++4 Code for Printing the Fibonacci Series

The following C++ code generates and prints the Fibonacci series up to a specified
number of terms:

1 #include <iostream>
using namespace std;

2

O N N NN
OCH

[SO
SN N

~

void printFibonaceci(int terms) {

int

int first = 0, second = 1, next;

cout << ”"Fibonacci Series: 7;
for (int i = 0; i < terms; i++) {
if (i<=1) {

next = i; // First two terms are 0 and 1
} else {
next = first + second; // Next term is the sum of the previous
two
first = second; // Update first
second = next; // Update second
}
cout << mnext << ” ”7; // Print the current term
}

cout << endl;

main () {

int terms;

cout << ”"Enter the number of terms: 7;
cin >> terms;

printFibonacci(terms) ;

return 0;

This code defines a function printFibonacci that calculates and displays the Fi-

bonacci series. It uses a loop to compute each term based on the previous two terms,
starting with 0 and 1. The user specifies how many terms of the series to print.

	Frequency Distribution
	Finite and Infinite Series
	Introduction
	Finite Series
	Infinite Series

	Matrix multiplication
	C++ Code for Dot Product of Two 3x3 Matrices
	Explanation of void in C++
	As a Return Type for Functions
	As an Empty Argument List

	Fortran Code for Dot Product of a 3x3 Matrix

	Prime numbers and Fibonacci Series
	C++ Code for Finding a Set of Prime Numbers
	C++ Code for Printing the Fibonacci Series

