
Introduction to Computational Physics

UPES Dehradun

Introduction to Computational Physics - 2025

Dr. Nitesh Kumar

May 23, 2025

© 2025 Nitesh Kumar. All rights reserved. 2

Contents

1 Introduction to FORTRAN 90 on Linux 7
1.1 Getting Started with Linux . 7

1.1.1 Basic Linux Commands . 7
1.1.2 File System Hierarchy . 8

1.2 Text Processing with grep, sed, and awk 8
1.2.1 grep: Global Regular Expression Print 8
1.2.2 sed: Stream Editor . 9
1.2.3 awk: Pattern Scanning and Processing Language 9
1.2.4 Combining grep, sed, and awk 10

1.3 Historical Development of FORTRAN . 11
1.3.1 Evolution of FORTRAN . 11

1.4 Setting Up the FORTRAN Environment on Linux 11
1.4.1 Installing GNU Fortran Compiler (gfortran) 11

1.5 Introduction to Fortran . 11
1.5.1 Basic Syntax . 12
1.5.2 Variables and Data Types . 12
1.5.3 Control Structures . 12
1.5.4 Arrays . 12
1.5.5 Subroutines and Functions . 12
1.5.6 File Handling . 12

1.6 Advanced Topics . 12
1.7 Example Programs . 12

1.7.1 Basic syntax . 12
1.7.2 Variables and data types . 13
1.7.3 Control structures . 13
1.7.4 Arrays . 14
1.7.5 Functions . 15
1.7.6 Subroutines . 16
1.7.7 File handling . 16

1.8 Linking external libraries . 18
1.8.1 Steps to Link to External Libraries 18
1.8.2 Example: Solving a Linear System using LAPACK 18
1.8.3 Fortran Code . 18
1.8.4 Compilation and Linking . 20
1.8.5 Running the Program . 20

1.9 Matrix Multiplication of size 2x2 . 21
1.9.1 Flowchart . 21
1.9.2 Code . 21

3

Contents

1.10 Conclusion . 23

2 Introduction to C++ 27
2.1 Basic Syntax . 27
2.2 Variables and Data Types . 27
2.3 Control Structures . 27
2.4 Functions . 27
2.5 Arrays and Vectors . 27
2.6 Object-Oriented Programming (OOP) 28
2.7 File Handling . 28
2.8 Advanced Topics . 28
2.9 Example Programs . 28

2.9.1 Basic syntax . 28
2.9.2 Variables and data types . 28
2.9.3 Control structures . 29
2.9.4 Arrays and vectors . 30
2.9.5 Functions . 32
2.9.6 File handling . 32

2.10 Pointers in C++ . 33
2.10.1 Examples . 34

2.11 Arrays in C++ . 34
2.11.1 Examples . 35

2.12 Pointers and Arrays . 35
2.12.1 Examples . 35

2.13 Dynamic list Example . 36
2.13.1 Explanation . 36

2.14 Significance of Using Pointers . 37

3 Introduction to Gnuplot 41
3.1 Overview . 41
3.2 Getting Started with Gnuplot . 41
3.3 Plotting Mathematical Functions . 41
3.4 Plotting Data from Files . 41
3.5 Customizing Plots . 42
3.6 Advanced Plotting Techniques . 43
3.7 Data Analysis using Gnuplot . 44

3.7.1 Installation . 45
3.7.2 Basic Usage . 45
3.7.3 Example 1: Plotting Data from a File 45
3.7.4 Example 2: Fitting a Curve to Data 45
3.7.5 Example 3: 3D Data Visualization 45
3.7.6 Example 4: Histogram Plotting 45
3.7.7 Example 5: Statistical Analysis 46
3.7.8 Example 6: Data Transformation and Scripting 46
3.7.9 Example 7: Multiplot Layouts . 46
3.7.10 Example 8: Heatmaps . 46
3.7.11 Example 9: Error Bars . 46
3.7.12 Example 10: Exporting Plots . 47

© 2025 Nitesh Kumar. All rights reserved. 4

Contents

3.8 Statistical Data Analysis with GNUPLOT 47

3.9 Basic Statistical Analysis . 47

3.9.1 Example Data File . 47

3.9.2 Computing Minimum, Maximum, and Mean 47

3.10 Regression Analysis . 48

3.10.1 Simple Regression . 48

3.10.2 Multivariate Regression . 48

3.11 Data Smoothing . 49

3.11.1 Smoothing Methods . 49

3.11.2 Example: Cubic Spline Smoothing 49

3.11.3 Example: Bezier Smoothing . 49

3.12 Conclusion . 50

4 Introduction to LATEX 55

4.1 Introduction to LATEX . 55

4.2 Getting Started with LATEX . 55

4.2.1 Installing LATEX . 55

4.2.2 First LATEX Document . 56

4.3 The Preamble and Body of a LATEX Document 56

4.3.1 The Preamble . 56

4.3.2 The Body . 57

4.4 Document Structure . 57

4.4.1 Basic Structure . 57

4.4.2 Lists . 58

4.5 Mathematical Typesetting . 58

4.5.1 Inline Math . 58

4.5.2 Displayed Equations . 58

4.5.3 Complex Equations . 59

4.6 Figures and Tables . 60

4.6.1 Inserting Figures . 60

4.6.2 Tables . 61

4.7 Cross-referencing and Bibliography . 65

4.7.1 Cross-referencing . 65

4.7.2 Bibliography . 66

4.8 Customizing LATEX Documents . 68

4.8.1 Page Layout . 68

4.8.2 Font and Style . 69

4.8.3 Color and Highlighting . 71

4.9 Error Handling and Debugging . 71

4.9.1 Common LATEX Errors . 72

4.9.2 Debugging Tips . 73

4.9.3 Warnings . 74

4.9.4 Tools for Error-Free LATEX . 74

4.10 Title Page and Its Customization in LaTeX 75

4.10.1 Basic Title Page . 75

4.10.2 Customizing the Title Page . 75

4.10.3 Example of a Customized Title Page 76

© 2025 Nitesh Kumar. All rights reserved. 5

Contents

5 Finding Roots of an Equation 81
5.1 Bisection Method . 81

5.1.1 Method Explanation . 81
5.1.2 Example: Finding the Root of f(x) = sinx - x cosx 82
5.1.3 Error Estimation in the Bisection Method 83
5.1.4 Disadvantages of the Bisection Method 84
5.1.5 Practice Questions . 87

5.2 Secant Method . 88
5.2.1 Method Explanation . 88
5.2.2 Example: Solving f(x) = sinx− xcosx = 0 for x ∈ [4, 5] 89
5.2.3 Practice Questions . 89

5.3 Newton-Raphson Method . 89
5.3.1 Taylor Series Expansion using h 90
5.3.2 First-Order Approximation . 90
5.3.3 Convergence of the Method . 90
5.3.4 Geometric Interpretation . 91
5.3.5 A new function . 91
5.3.6 Detailed Iterations in Table . 92
5.3.7 Practice Questions . 93
5.3.8 Detailed Iterations in Table . 93

6 Function Approximation 95
6.1 Introduction . 95
6.2 Lagrange Interpolation Formula . 95

6.2.1 Definition and Notation . 95
6.2.2 Properties of the Lagrange Basis Polynomials 96
6.2.3 Worked Example . 96

6.3 Error Analysis and Convergence . 97
6.4 Newton’s Divided Difference Formula . 97

7 Numerical Integration 101
7.1 Trapezoidal Rule . 101

7.1.1 Derivation . 101
7.1.2 Error Term . 101

7.2 Simpson’s 1/3 Rule . 102
7.2.1 3.1 Derivation . 102
7.2.2 Error Term . 102

7.3 Simpson’s 3/8 Rule . 102
7.3.1 Derivation . 102
7.3.2 Error Term . 102

7.4 Example: Approximate
∫ 1

0
x2 dx . 102

7.4.1 Exact Value . 103
7.4.2 Trapezoidal Rule (n = 4) . 103
7.4.3 Simpson’s 1/3 Rule (n = 4) . 103
7.4.4 Simpson’s 3/8 Rule (n = 3) . 103

7.5 Conclusion . 103
7.6 C++ code . 104

8 ODE 107

© 2025 Nitesh Kumar. All rights reserved. 6

Chapter 1

Introduction to FORTRAN 90 on
Linux

1.1 Getting Started with Linux

Before diving into FORTRAN 90, it’s essential to understand some basic Linux com-
mands and environment setup to efficiently work with programming on Linux. Linux is a
powerful and flexible operating system that is widely used for programming and scientific
computing.

1.1.1 Basic Linux Commands

Here are some basic Linux commands you’ll use frequently while working with FORTRAN
and other programming languages:

• pwd: Print the current working directory.

1 $ pwd

2 /home/user

3

• ls: List files and directories.

1 $ ls

2 Documents Downloads hello.f90 Pictures

3

• cd: Change directory.

1 $ cd Documents

2

• mkdir: Create a new directory.

1 $ mkdir fortran_projects

2

• rm: Remove files or directories.

7

Chapter 1. Introduction to FORTRAN 90 on Linux

1 $ rm hello.f90

2

• nano or vim: Command-line text editors. We’ll use nano for simplicity.

1 $ vim hello.f90

2

• gfortran: The GNU Fortran compiler, used for compiling FORTRAN code.

1.1.2 File System Hierarchy

Linux organizes files and directories into a hierarchical structure, starting with the root
directory (/). Some common directories you’ll work with include:

• /home: Contains user home directories.

• /usr: Contains installed software and libraries.

• /etc: Configuration files.

Understanding this structure will help you navigate and manage files while working
on your projects.

1.2 Text Processing with grep, sed, and awk

In Unix-like operating systems, efficient text processing is achieved through powerful
command-line utilities such as grep, sed, and awk. These tools allow users to search,
filter, and manipulate text data directly from the terminal. This section provides an
overview of each utility along with detailed examples.

1.2.1 grep: Global Regular Expression Print

The grep command searches through files for lines that match a specified pattern. It’s
commonly used for filtering text data based on regular expressions.

Basic Usage

To search for a specific pattern in a file:

1 grep "pattern" filename

Example: To find lines containing the word ”error” in system.log:

1 grep "error" system.log

© 2025 Nitesh Kumar. All rights reserved. 8

Chapter 1. Introduction to FORTRAN 90 on Linux

Common Options

• -i: Perform case-insensitive matching.

• -r: Recursively search directories.

• -v: Invert match to select non-matching lines.

• -n: Prefix each line with its line number.

Example: Case-insensitive search for ”warning” in all .txt files:

1 grep -i "warning" *.txt

1.2.2 sed: Stream Editor

sed is a stream editor used for parsing and transforming text. It reads input line by line,
applies specified operations, and outputs the modified text.

Basic Substitution

To replace occurrences of a pattern:

1 sed ’s/old/new/’ filename

Example: Replace the first occurrence of ”foo” with ”bar” in each line of file.txt:

1 sed ’s/foo/bar/’ file.txt

Global Substitution

To replace all occurrences in each line:

1 sed ’s/old/new/g’ filename

Example: Replace all occurrences of ”foo” with ”bar”:

1 sed ’s/foo/bar/g’ file.txt

In-Place Editing

To edit files in place:

1 sed -i ’s/old/new/g’ filename

Example: Replace ”foo” with ”bar” directly in file.txt:

1 sed -i ’s/foo/bar/g’ file.txt

1.2.3 awk: Pattern Scanning and Processing Language

awk is a versatile programming language designed for text processing and data extraction.
It operates on files line by line and splits each line into fields.

© 2025 Nitesh Kumar. All rights reserved. 9

Chapter 1. Introduction to FORTRAN 90 on Linux

Printing Specific Fields

Example: Given a file data.txt:

1 Name Age Country

2 Alice 30 USA

3 Bob 25 UK

4 Charlie 35 Canada

To print the names and ages:

1 awk ’{print $1 , $2}’ data.txt

Conditional Processing

Example: Print names of people older than 30:

1 awk ’$2 > 30 {print $1}’ data.txt

Calculations

Example: Calculate the average age:

1 awk ’{sum += $2; count ++} END {print sum/count}’ data.txt

Field Separators

awk uses whitespace as the default field separator. To specify a different delimiter:

1 awk -F, ’{print $1 , $2}’ data.csv

Example: For a comma-separated file data.csv:

1 Name ,Age ,Country

2 Alice ,30,USA

3 Bob ,25,UK

4 Charlie ,35, Canada

To print names and countries:

1 awk -F, ’{print $1 , $3}’ data.csv

1.2.4 Combining grep, sed, and awk

These tools can be combined to perform complex text processing tasks.
Example: Extract lines containing ”error” from system.log, replace ”error” with

”warning”, and print the first field:

1 grep "error" system.log | sed ’s/error/warning/’ | awk ’{print $1
}’

This command sequence filters lines with ”error”, substitutes ”error” with ”warning”,
and prints the first field of each resulting line.

Mastering grep, sed, and awk enhances one’s ability to efficiently process and ana-
lyze text data in Unix-like systems. These tools offer robust functionalities that, when
combined, provide powerful solutions for a wide range of text manipulation tasks.

© 2025 Nitesh Kumar. All rights reserved. 10

Chapter 1. Introduction to FORTRAN 90 on Linux

1.3 Historical Development of FORTRAN

FORTRAN (FORmula TRANslation) is one of the oldest high-level programming lan-
guages. Originally developed in the 1950s by IBM, it has evolved significantly over the
decades, with FORTRAN 90 being a major revision.

1.3.1 Evolution of FORTRAN

• FORTRAN I (1957): The first compiled high-level language, primarily designed
for scientific and engineering computations.

• FORTRAN IV and 66 (1960s): Introduced subroutines, functions, and better
control structures.

• FORTRAN 77: Improved string handling and more complex control structures.

• FORTRAN 90 (1991): Introduced modern programming concepts like recursion,
modules, dynamic memory allocation, and array programming.

FORTRAN 90 represents a significant step forward from FORTRAN 77, incorporating
many new features designed to improve the flexibility and readability of code.

1.4 Setting Up the FORTRAN Environment on Linux

Before writing any code, you need to install the GNU Fortran compiler. Most Linux
distributions provide the gfortran package.

1.4.1 Installing GNU Fortran Compiler (gfortran)

To install gfortran on a Debian-based system (like Ubuntu), run:

1 $ sudo apt -get update

2 $ sudo apt -get install gfortran

For Red Hat-based systems, use:

1 $ sudo yum install gfortran

After installation, you can check if the compiler is installed correctly:

1 $ gfortran --version

1.5 Introduction to Fortran

Fortran (short for Formula Translation) is a general-purpose, imperative programming
language that is particularly suited for scientific and engineering applications. It was
developed in the 1950s and has since evolved into several versions, with Fortran 90 and
Fortran 95 being the most widely used.

© 2025 Nitesh Kumar. All rights reserved. 11

Chapter 1. Introduction to FORTRAN 90 on Linux

1.5.1 Basic Syntax

Fortran programs are composed of statements, which are written in a fixed-format style.
Each statement begins in column 1 and can extend up to column 72. Statements are
typically written in uppercase, although lowercase is also allowed.

1.5.2 Variables and Data Types

Fortran supports several data types, including integers, real numbers, complex numbers,
and character strings. Variables are declared using the INTEGER, REAL, COMPLEX, or
CHARACTER keywords, followed by the variable name.

1.5.3 Control Structures

Fortran provides various control structures for program flow, including IF-THEN-ELSE

statements, DO loops, and SELECT CASE statements. These structures allow for condi-
tional execution and repetitive tasks.

1.5.4 Arrays

Arrays are an essential part of Fortran programming. They allow you to store and
manipulate multiple values of the same data type. Fortran supports both one-dimensional
and multi-dimensional arrays.

1.5.5 Subroutines and Functions

Subroutines and functions are used to modularize code and improve code reusability.
Subroutines are blocks of code that perform a specific task, while functions return a
value.

1.5.6 File Handling

Fortran provides built-in functions and subroutines for reading from and writing to files.
This allows you to interact with external data files and perform input/output operations.

1.6 Advanced Topics

Fortran also offers advanced features such as modules, derived types, and object-oriented
programming. These features enhance code organization and allow for more complex
programming structures.

1.7 Example Programs

1.7.1 Basic syntax

1 PROGRAM hello

2 PRINT *, ’Hello , World!’

3 END PROGRAM hello

© 2025 Nitesh Kumar. All rights reserved. 12

Chapter 1. Introduction to FORTRAN 90 on Linux

To compile the program, use the following commands:

1 $ gfortran hello.f90 -o hello

To run the compiled program, use:

1 $./ hello

Output:

1 Hello , World!

1.7.2 Variables and data types

1 PROGRAM variables

2 INTEGER :: i

3 REAL :: x

4 COMPLEX :: z

5 CHARACTER(LEN =10) :: name

6 LOGICAL ::

7

8 i = 10

9 x = 3.14

10 z = (1.0, 2.0)

11 name = ’Fortran ’

12

13 PRINT *, ’Integer:’, i

14 PRINT *, ’Real:’, x

15 PRINT *, ’Complex:’, z

16 PRINT *, ’Character:’, name

17 END PROGRAM variables

To compile the program, use the following commands:

1 $ gfortran variables.f90 -o variables

To run the compiled program, use:

1 $./ variables

Output:

1 Integer: 10

2 Real: 3.14000000

3 Complex: (1.00000000 ,2.00000000)

4 Character: Fortran

1.7.3 Control structures

1 PROGRAM control

2 INTEGER :: i

3 i = 5

4

© 2025 Nitesh Kumar. All rights reserved. 13

Chapter 1. Introduction to FORTRAN 90 on Linux

5 IF (i > 0) THEN

6 PRINT *, ’Positive ’

7 ELSE

8 PRINT *, ’Negative ’

9 END IF

10

11 DO i = 1, 5

12 PRINT *, i

13 END DO

14

15 SELECT CASE (i)

16 CASE (1)

17 PRINT *, ’One’

18 CASE (2)

19 PRINT *, ’Two’

20 CASE DEFAULT

21 PRINT *, ’Other ’

22 END SELECT

23 END PROGRAM control

To compile the program, use the following commands:

1 $ gfortran control.f90 -o control

To run the compiled program, use:

1 $./ control

Output:

1 Positive

2 1

3 2

4 3

5 4

6 5

7 Other

1.7.4 Arrays

1 PROGRAM arrays

2 INTEGER , DIMENSION (3) :: a

3 REAL , DIMENSION(2, 2) :: b

4

5 a = [1, 2, 3]

6 b = RESHAPE ([1.0 , 2.0, 3.0, 4.0], [2, 2])

7

8 PRINT *, ’Array a:’, a

9 PRINT *, ’Array b:’

10 DO i = 1, 2

11 PRINT *, b(i, :)

12 END DO

13 END PROGRAM arrays

© 2025 Nitesh Kumar. All rights reserved. 14

Chapter 1. Introduction to FORTRAN 90 on Linux

To compile the program, use the following commands:

1 $ gfortran arrays.f90 -o arrays

To run the compiled program, use:

1 $./ arrays

Output:

1 Array a: 1 2 3

2 Array b:

3 1.00000000 2.00000000

4 3.00000000 4.00000000

1.7.5 Functions

The syntax of the function is given below.

1 type FUNCTION func -name(arg1 , arg2 ,)

2 IMPLICIT NONE

3 [specification part]

4 [execution part]

5 [subprogram part]

6 END FUNCTION func -name

where ‘type’ is the data types like ‘INTEGER’, ‘REAL’, ... etc.
A sample code to add two numbers using Fortran function is given below:

1 program adding

2 IMPLICIT NONE

3 INTEGER :: a, b, addition , add

4 a = 4

5 b = 6

6 addition = add(a, b)

7 print*, a, b, addition

8 END PROGRAM adding

9

10 INTEGER FUNCTION add(x, y)

11 IMPLICIT NONE

12 INTEGER , INTENT(IN) :: x, y

13 add = (x+y)

14 END FUNCTION add

Another way of writing functions in Fortran:

1 program TwoFunctions

2 IMPLICIT NONE

3 REAL :: a, b, A_mean , G_mean

4 READ (*,*) a, b

5 A_mean = ArithMean(a, b)

6 G_mean = GeoMean(a, b)

7 WRITE (*,*) a, b, A_mean , G_Mean

8 CONTAINS

9 REAL FUNCTION ArithMean(a, b)

© 2025 Nitesh Kumar. All rights reserved. 15

Chapter 1. Introduction to FORTRAN 90 on Linux

10 IMPLICIT NONE

11 REAL , INTENT(IN) ::a, b

12 ArithMean = (a+b)/2.0

13 END FUNCTION ArithMean

14

15 REAL FUNCTION GeoMean(a, b)

16 IMPLICIT NONE

17 REAL , INTENT(IN) ::a, b

18 GeoMean = SQRT(a*b)

19 END FUNCTION GeoMean

20 END PROGRAM TwoFunctions

1.7.6 Subroutines

1 PROGRAM main

2 IMPLICIT NONE

3 INTEGER :: x, y, z

4 x = 5

5 y = 2

6 CALL ADD(x, y, z)

7 print*, ’ADDITION IS’, z

8 END PROGRAM main

9

10 SUBROUTINE ADD(a, b, c)

11 IMPLICIT NONE

12 INTEGER , INTENT(IN) :: a, b

13 INTEGER , INTENT(OUT) :: c

14 c = a + b

15 END SUBROUTINE ADD

To compile the program, use the following commands:

1 $ gfortran main.f90 -o main

To run the compiled program, use:

1 $./main

Output:

1 Sum: 15

1.7.7 File handling

This code demonstrates how to write data to a file in Fortran. It opens a file, writes
multiple lines to it, and then closes the file.

1 PROGRAM write_to_file

2 INTEGER :: unit_number

3 INTEGER :: i

4 CHARACTER(len =20) :: filename

5

© 2025 Nitesh Kumar. All rights reserved. 16

Chapter 1. Introduction to FORTRAN 90 on Linux

6 ! Set the file name and the unit number

7 filename = ’output.txt’

8 unit_number = 10

9

10 ! Open the file for writing

11 OPEN(unit=unit_number , file=filename , status=’unknown ’)

12

13 ! Write some data into the file

14 DO i = 1, 5

15 WRITE(unit_number , *) ’Line number:’, i

16 END DO

17

18 ! Close the file

19 CLOSE(unit_number)

20

21 PRINT *, ’Data has been written to ’, filename

22 END PROGRAM write_to_file

Explanation

• PROGRAM write to file: The program starts with a main program block named
write to file.

• INTEGER :: unit number, i: The variables unit number and i are declared as
integers. unit number represents the file identifier, and i is used in the loop.

• CHARACTER(len=20) :: filename: This declares a character variable filename

with a length of 20 characters to store the name of the file.

• OPEN(unit=unit number, file=filename, status=’unknown’): Opens the file
output.txt with the file unit specified by unit number. The status=’unknown’

allows Fortran to create the file if it doesn’t exist or overwrite it if it already exists.

• DO i = 1, 5: This loop runs from 1 to 5, writing a line to the file in each iteration.

• WRITE(unit number, *) ’Line number:’, i: This statement writes the text ’Line
number:’ followed by the value of i to the file.

• CLOSE(unit number): Closes the file associated with unit number.

To compile the program, use the following commands:

1 $ gfortran file_handling.f90 -o file_handling

To run the compiled program, use:

1 $./ file_handling

These example programs demonstrate the basic syntax, variables, control structures,
arrays, subroutines, functions, and file handling in Fortran programming. By under-
standing these concepts, you can start writing your own Fortran programs for scientific
and engineering applications.

© 2025 Nitesh Kumar. All rights reserved. 17

Chapter 1. Introduction to FORTRAN 90 on Linux

1.8 Linking external libraries

Linking to external libraries in Fortran is a common task when you want to leverage
precompiled libraries such as LAPACK, BLAS, or others for numerical and scientific
computations. This document will explain the steps to link Fortran programs with ex-
ternal libraries using the GNU Fortran compiler (gfortran), and provide an example of
linking to the LAPACK library.

1.8.1 Steps to Link to External Libraries

To link an external library to your Fortran program, follow these steps:

1. Install the necessary libraries: Ensure that the external library is installed on
your system. For example, you can install LAPACK and BLAS on Linux using the
following command:

1 sudo apt -get install liblapack -dev libblas -dev

2

2. Compile the Fortran code: Use the gfortran compiler to compile your Fortran
code and link it to the library using the -l option.

3. Link during compilation: Use the -L option to specify the path to the external
library and the -l option to link against the library.

1.8.2 Example: Solving a Linear System using LAPACK

Below is an example Fortran program that solves a system of linear equations Ax = b
using the LAPACK routine dgesv, which performs LU decomposition.

1.8.3 Fortran Code

1 PROGRAM solve_linear_system

2 USE , INTRINSIC :: iso_c_binding

3 IMPLICIT NONE

4

5 INTEGER , PARAMETER :: n = 3

6 INTEGER :: info

7 REAL(KIND=c_double), DIMENSION(n,n) :: A

8 REAL(KIND=c_double), DIMENSION(n) :: B

9 INTEGER , DIMENSION(n) :: ipiv

10

11 ! Matrix A (3x3)

12 A = RESHAPE ([3.0d0, 1.0d0, 2.0d0, &

13 6.0d0 , 3.0d0 , 4.0d0 , &

14 9.0d0 , 5.0d0 , 8.0d0], [n,n])

15

16 ! Right -hand side vector B (3x1)

17 B = [1.0d0, 0.0d0, 2.0d0]

18

© 2025 Nitesh Kumar. All rights reserved. 18

Chapter 1. Introduction to FORTRAN 90 on Linux

19 ! Call LAPACK subroutine to solve the system of equations A*x =

B

20 CALL dgesv(n, 1, A, n, ipiv , B, n, info)

21

22 ! Check for errors

23 IF (info /= 0) THEN

24 PRINT *, ’Error: LAPACK dgesv failed with info =’, info

25 ELSE

26 PRINT *, ’Solution vector X:’

27 PRINT *, B

28 END IF

29

30 END PROGRAM solve_linear_system

In this program:

• The matrix A is a 3x3 matrix, and B is a 3x1 vector. The goal is to solve Ax = B
for the unknown vector x.

• dgesv is the LAPACK routine that performs the LU decomposition and solves the
system of equations.

Explanation

• PROGRAM solve linear system: This statement starts the main program block
named solve linear system.

• USE, INTRINSIC :: iso c binding: This module provides definitions for inter-
operability with C, particularly for specifying precision with c double.

• IMPLICIT NONE: This directive requires explicit declaration of all variables, helping
to avoid errors due to undeclared variables.

• INTEGER, PARAMETER :: n = 3: This declares an integer parameter n with a
value of 3, representing the size of the matrix and vector.

• INTEGER :: info: This integer variable will store the error information returned
by the LAPACK subroutine.

• REAL(KIND=c double), DIMENSION(n,n) :: A: Declares a 3x3 matrix A of type
REAL(KIND=c double) for high-precision floating-point numbers.

• REAL(KIND=c double), DIMENSION(n) :: B: Declares a 3x1 vector B of the same
floating-point type.

• INTEGER, DIMENSION(n) :: ipiv: Declares an integer array ipiv used by the
LAPACK subroutine to store pivot indices.

• A = RESHAPE([...] [,n,n]): Initializes the matrix A with specific values and
reshapes it to a 3x3 matrix.

• B = [1.0d0, 0.0d0, 2.0d0]: Initializes the vector B with given values.

© 2025 Nitesh Kumar. All rights reserved. 19

Chapter 1. Introduction to FORTRAN 90 on Linux

• CALL dgesv(n, 1, A, n, ipiv, B, n, info): Calls the LAPACK subroutine
dgesv to solve the system of linear equations A*x = B. Here, n is the size of the
matrix, 1 is the number of right-hand sides, A is the coefficient matrix, ipiv is the
pivot index array, B is the right-hand side vector, and info will hold the exit status.

• IF (info /= 0): Checks if the LAPACK subroutine encountered an error. If info
is not zero, an error message is printed.

• PRINT *, ’Solution vector X:’: If there is no error, the solution vector B is
printed, which contains the solution to the system.

• END PROGRAM solve linear system: Ends the program.

1.8.4 Compilation and Linking

To compile and link the program with the LAPACK and BLAS libraries, use the following
commands:

1 gfortran solve_linear_system.f90 -o solve_linear_system -llapack

-lblas

Here:

• -llapack links the LAPACK library.

• -lblas links the BLAS library, which is a prerequisite for LAPACK.

If the libraries are not in the default location, you can specify the path using the -L

option:

1 gfortran solve_linear_system.f90 -o solve_linear_system -L/usr/

local/lib -llapack -lblas

1.8.5 Running the Program

Once the program is compiled, you can run it using:

1 ./ solve_linear_system

The output will display the solution vector x for the system Ax = b.

© 2025 Nitesh Kumar. All rights reserved. 20

Chapter 1. Introduction to FORTRAN 90 on Linux

1.9 Matrix Multiplication of size 2x2

1.9.1 Flowchart

Start

Input matrices A and B

Initialize C to zero

For i = 1 to 2 For j = 1 to 2 For k = 1 to 2

Compute C(i, j) = C(i, j) + A(i, k) ·B(k, j)

End k loopEnd j loopEnd i loop

Output matrix C

Stop

1.9.2 Code

1 program matrix_multiplication

2 implicit none

3 real :: A(2, 2), B(2, 2), C(2, 2)

4

5 ! Input matrices

6 A = reshape ([1.0 , 2.0, 3.0, 4.0], shape(A)) ! Matrix A

7 B = reshape ([5.0 , 6.0, 7.0, 8.0], shape(B)) ! Matrix B

8

© 2025 Nitesh Kumar. All rights reserved. 21

Chapter 1. Introduction to FORTRAN 90 on Linux

9 ! Call the function to multiply A and B, storing the result

in C

10 C = matrix_multiply(A, B)

11

12 ! Output the result

13 print *, "Matrix A:"

14 call print_matrix(A)

15 print *, "Matrix B:"

16 call print_matrix(B)

17 print *, "Resultant Matrix C (A * B):"

18 call print_matrix(C)

19

20 contains

21

22 ! Function to multiply two 2x2 matrices

23 function matrix_multiply(A, B) result(C)

24 implicit none

25 real , intent(in) :: A(2, 2), B(2, 2)

26 real :: C(2, 2)

27 integer :: i, j, k

28

29 ! Initialize the result matrix C to zero

30 C = 0.0

31

32 ! Perform matrix multiplication

33 do i = 1, 2

34 do j = 1, 2

35 do k = 1, 2

36 C(i, j) = C(i, j) + A(i, k) * B(k, j)

37 end do

38 end do

39 end do

40 end function matrix_multiply

41

42 ! Subroutine to print a 2x2 matrix

43 subroutine print_matrix(M)

44 implicit none

45 real , intent(in) :: M(2, 2)

46 integer :: i

47

48 do i = 1, 2

49 write(*, ’(F6.2, F6.2)’) M(i, 1), M(i, 2)

50 end do

51 end subroutine print_matrix

52

53 end program matrix_multiplication

© 2025 Nitesh Kumar. All rights reserved. 22

Chapter 1. Introduction to FORTRAN 90 on Linux

1.10 Conclusion

This chapter introduced you to the basics of working with Linux and FORTRAN 90. You
learned how to navigate the Linux file system, write a simple ”Hello, World!” program,
and compile and execute FORTRAN code using the gfortran compiler. In subsequent
chapters, we’ll dive deeper into advanced FORTRAN features such as arrays, file handling,
and scientific computing techniques.

© 2025 Nitesh Kumar. All rights reserved. 23

Chapter 1. Introduction to FORTRAN 90 on Linux

Exercise

Category 1: Easy (Conceptual and Memory-Based)

1. What makes Linux a preferred operating system for scientific computing?

2. Why is FORTRAN still relevant for numerical and scientific applications in the
modern era?

3. What is the primary purpose of the gfortran compiler in FORTRAN program-
ming?

4. Explain the difference between fixed-format and free-format styles in FORTRAN.

5. Why is the IMPLICIT NONE directive critical for error-free programming in FOR-
TRAN?

6. What does the RESHAPE function do in FORTRAN? Provide an example scenario.

7. Define the purpose of modules in FORTRAN. How do they improve code organi-
zation?

8. Why are control structures such as DO loops important for computational tasks?

9. Briefly explain the role of the SELECT CASE statement in FORTRAN programs.

10. How does the Linux nano editor help in writing and editing FORTRAN code?

Category 2: Mid-Level (Understanding-Based)

1. Compare and contrast FORTRAN’s built-in file-handling features with those in
other programming languages.

2. Write a FORTRAN code snippet that reads two real numbers from a file and prints
their sum.

3. How does FORTRAN’s array indexing differ from Python’s? What advantages does
this provide in scientific computing?

4. Write a program to determine whether a given integer is even or odd using FOR-
TRAN.

5. Describe how you would use FORTRAN to simulate the temperature distribution
in a rod (hint: use arrays).

6. Explain how LAPACK can be used to solve a set of linear equations in FORTRAN.
Why is linking external libraries beneficial?

7. Design a FORTRAN program to compute the factorial of a number using recursion.

8. How would you modify a FORTRAN program to store the computed results in a
text file? Provide a pseudocode outline.

© 2025 Nitesh Kumar. All rights reserved. 24

Chapter 1. Introduction to FORTRAN 90 on Linux

9. Describe how you would debug a FORTRAN program using Linux tools like gdb

or compiler flags.

10. Explain the role of logical operators in FORTRAN with an example of their use in
a physical simulation.

Category 3: Application-Based (Flowchart and Coding for
Physics)

1. Write the algorithm and draw a flowchart to compute the determinant of a 3x3
matrix. Implement it in FORTRAN.

2. Create a flowchart and write a FORTRAN program to compute the trajectory of a
projectile given its initial velocity and angle.

3. Develop an algorithm and flowchart for simulating the motion of a harmonic oscil-
lator using Euler’s method.

4. Create a flowchart and program in FORTRAN to calculate the area under a curve
using the trapezoidal rule.

5. Write an algorithm and create a flowchart to compute the orbital velocity of a
planet given its distance from the Sun. Implement the solution in FORTRAN.

6. Create a flowchart and write a FORTRAN program to solve the one-dimensional
heat equation using finite differences.

7. Design a flowchart and write FORTRAN code to compute the discrete Fourier
transform of a signal.

8. Write an algorithm and create a flowchart for calculating the electric field at a point
due to multiple charges in 2D space.

9. Create a flowchart and program in FORTRAN to simulate a 2D random walk for
a particle.

10. Write an algorithm and flowchart to calculate the energy levels of an electron in a
one-dimensional potential well using the Schrödinger equation.

© 2025 Nitesh Kumar. All rights reserved. 25

Chapter 1. Introduction to FORTRAN 90 on Linux

© 2025 Nitesh Kumar. All rights reserved. 26

Chapter 2

Introduction to C++

C++ is a general-purpose programming language created as an extension of C by Bjarne
Stroustrup in the early 1980s. It supports both procedural and object-oriented program-
ming paradigms, making it versatile for systems programming, game development, and
real-time applications.

2.1 Basic Syntax

C++ programs consist of statements that are grouped into functions and classes. The
main function, int main(), is the starting point of any C++ program. Statements in
C++ are terminated by semicolons, and the language is case-sensitive.

2.2 Variables and Data Types

C++ supports several basic data types, such as integers (int), floating-point numbers
(float, double), characters (char), and booleans (bool). Variables are declared by
specifying the type followed by the variable name.

2.3 Control Structures

C++ provides control structures like if-else, switch-case, loops (for, while, and
do-while), and goto statements for controlling the flow of the program.

2.4 Functions

Functions in C++ allow for code reuse and modularization. A function is defined by
specifying a return type, a name, and a list of parameters. The function body is enclosed
in curly braces {}.

2.5 Arrays and Vectors

Arrays in C++ are a collection of elements of the same type. They are declared with a
fixed size and can be single or multi-dimensional. Vectors, from the Standard Template
Library (STL), offer dynamic sizing and more flexibility than arrays.

27

Chapter 2. Introduction to C++

2.6 Object-Oriented Programming (OOP)

C++ is known for its support of object-oriented programming. It introduces the concepts
of classes and objects, inheritance, polymorphism, encapsulation, and abstraction, which
allow for modeling real-world entities in a more intuitive way.

2.7 File Handling

C++ provides file handling mechanisms through the fstream library. You can read from
and write to files using ifstream (input file stream) and ofstream (output file stream).

2.8 Advanced Topics

Advanced features of C++ include templates, exception handling, operator overloading,
and the Standard Template Library (STL) for generic programming. These features
provide flexibility and efficiency in coding.

2.9 Example Programs

2.9.1 Basic syntax

1 #include <iostream >

2 using namespace std;

3

4 int main() {

5 cout << "Hello , World!" << endl;

6 return 0;

7 }

To compile the program, use the following commands:

1 $ g++ hello.cpp -o hello

To run the compiled program, use:

1 $./ hello

Output:

1 Hello , World!

2.9.2 Variables and data types

1 #include <iostream >

2 using namespace std;

3

4 int main() {

5 int i = 10;

6 float f = 3.14;

© 2025 Nitesh Kumar. All rights reserved. 28

Chapter 2. Introduction to C++

7 char c = ’A’;

8 bool b = true;

9

10 cout << "Integer: " << i << endl;

11 cout << "Float: " << f << endl;

12 cout << "Character: " << c << endl;

13 cout << "Boolean: " << b << endl;

14

15 return 0;

16 }

To compile the program, use the following commands:

1 $ g++ variables.cpp -o variables

To run the compiled program, use:

1 $./ variables

Output:

1 Integer: 10

2 Float: 3.14

3 Character: A

4 Boolean: 1

2.9.3 Control structures

1 #include <iostream >

2 using namespace std;

3

4 int main() {

5 int i = 5;

6

7 if (i > 0) {

8 cout << "Positive" << endl;

9 } else {

10 cout << "Negative" << endl;

11 }

12

13 for (int j = 1; j <= 5; j++) {

14 cout << j << endl;

15 }

16 return 0;

17 }

To compile the program, use the following commands:

1 $ g++ control.cpp -o control

To run the compiled program, use:

1 $./ control

© 2025 Nitesh Kumar. All rights reserved. 29

Chapter 2. Introduction to C++

Output:

1 Positive

2 1

3 2

4 3

5 4

6 5

switch case:

1 #include <iostream >

2 using namespace std;

3

4 int main() {

5 int i = 5;

6

7 switch(i) {

8 case 1:

9 cout << "One" << endl;

10 break;

11 case 2:

12 cout << "Two" << endl;

13 break;

14 default:

15 cout << "Other" << endl;

16 }

17

18 return 0;

19 }

To compile the program, use the following commands:

1 $ g++ control_1.cpp -o control_1

To run the compiled program, use:

1 $./ control_1

Output:

1 Other

2.9.4 Arrays and vectors

1 #include <iostream >

2 #include <vector >

3 using namespace std;

4

5 int main() {

6 int arr[3] = {1, 2, 3};

7 vector <int > vec = {1, 2, 3, 4};

© 2025 Nitesh Kumar. All rights reserved. 30

Chapter 2. Introduction to C++

Figure 2.1: Switch case statements

8

9 cout << "Array elements: ";

10 for (int i = 0; i < 3; i++) {

11 cout << arr[i] << " ";

12 }

13 cout << endl;

14

15 cout << "Vector elements: ";

16 for (int i = 0; i < vec.size(); i++) {

17 cout << vec[i] << " ";

18 }

19 cout << endl;

20

21 return 0;

22 }

To compile the program, use the following commands:

1 $ g++ arrays.cpp -o arrays

To run the compiled program, use:

1 $./ arrays

Output:

1 Array elements: 1 2 3

2 Vector elements: 1 2 3 4

© 2025 Nitesh Kumar. All rights reserved. 31

Chapter 2. Introduction to C++

2.9.5 Functions

1 #include <iostream >

2 using namespace std;

3

4 int add(int a, int b) {

5 return a + b;

6 }

7

8 int main() {

9 int x = 5, y = 10;

10 int sum = add(x, y);

11 cout << "Sum: " << sum << endl;

12 return 0;

13 }

To compile the program, use the following commands:

1 $ g++ functions.cpp -o functions

To run the compiled program, use:

1 $./ functions

Output:

1 Sum: 15

2.9.6 File handling

1 // C++ Program to Read a File Line by Line using ifstream

2 #include <fstream >

3 #include <iostream >

4 #include <string >

5

6 using namespace std;

7

8 int main()

9 {

10 // Open the file "abc.txt" for reading

11 ifstream inputFile("abc.txt");

12

13 // Variable to store each line from the file

14 string line;

15

16 // Read each line from the file and print it

17 while (getline(inputFile , line)) {

18 // Process each line as needed

19 cout << line << endl;

20 }

21

22 // Always close the file when done

© 2025 Nitesh Kumar. All rights reserved. 32

Chapter 2. Introduction to C++

23 inputFile.close ();

24

25 return 0;

26 }

To compile the program, use the following commands:

1 $ g++ file_handling.cpp -o file_handling

To run the compiled program, use:

1 $./ file_handling

The example program to write into a file in C++ using ‘ofstream’:

1 #include <iostream >

2 #include <fstream > // Required for file handling

3 using namespace std;

4

5 int main() {

6 // Declare an output file stream (ofstream) object

7 ofstream outputFile;

8

9 // Open a file named "example.txt"

10 outputFile.open("example.txt");

11

12 // Check if the file opened successfully

13 if (! outputFile) {

14 cout << "Error opening file!" << endl;

15 return 1; // Exit the program with an error code

16 }

17

18 // Write data to the file

19 outputFile << "This is a simple example of writing to a file

in C++.\n";

20 outputFile << "File handling is important for many

applications .\n";

21 outputFile << "Learning how to write and read files is

essential !\n";

22

23 // Close the file

24 outputFile.close ();

25

26 // Notify the user

27 cout << "Data successfully written to the file!" << endl;

28

29 return 0;

30 }

2.10 Pointers in C++

A pointer in C++ is a variable that stores the memory address of another variable.
Pointers are widely used in C++ for dynamic memory management, passing parameters

© 2025 Nitesh Kumar. All rights reserved. 33

Chapter 2. Introduction to C++

by reference, and for working with arrays and data structures.

The syntax for declaring a pointer is:

1 type* pointer_name = &var_name;

Here, type refers to the data type that the pointer will point to.

Key operations with pointers:

• Address-of operator (&): Used to get the address of a variable.

• Dereference operator (*): Used to access the value stored at the address the
pointer holds.

2.10.1 Examples

1 // Example 1: Basic pointer usage

2 #include <iostream >

3 using namespace std;

4

5 int main() {

6 int var = 10;

7 int* ptr = &var; // Pointer to var

8

9 cout << "Value of var: " << var << endl;

10 cout << "Address of var: " << &var << endl;

11 cout << "Value stored in ptr (address of var): " << ptr <<

endl;

12 cout << "Dereferencing ptr to get value of var: " << *ptr <<

endl;

13

14 return 0;

15 }

2.11 Arrays in C++

An array in C++ is a collection of elements of the same data type, stored in contiguous
memory locations. Arrays can be accessed using index values starting from 0.

The syntax for declaring an array is:

1 type array_name[size] = {_, _, ...};

Important properties of arrays:

• Arrays can store multiple values in a single variable.

• The elements in an array are stored in contiguous memory locations.

• Arrays can be passed to functions by reference, meaning the memory address of the
first element is passed.

© 2025 Nitesh Kumar. All rights reserved. 34

Chapter 2. Introduction to C++

2.11.1 Examples

1 // Example 2: Working with arrays

2 #include <iostream >

3 using namespace std;

4

5 int main() {

6 int arr[5] = {1, 2, 3, 4, 5};

7

8 // Accessing array elements using indices

9 cout << "First element: " << arr [0] << endl;

10 cout << "Third element: " << arr [2] << endl;

11

12 // Using a loop to print all elements

13 for(int i = 0; i < 5; i++) {

14 cout << "Element at index " << i << ": " << arr[i] <<

endl;

15 }

16

17 return 0;

18 }

2.12 Pointers and Arrays

In C++, arrays and pointers are closely related. The name of an array acts as a pointer
to the first element of the array. This allows for pointer arithmetic and manipulation of
array elements via pointers.

2.12.1 Examples

1 // Example 3: Pointers and arrays

2 #include <iostream >

3 using namespace std;

4

5 int main() {

6 int arr[3] = {10, 20, 30};

7 int* ptr = arr; // ptr points to the first element of the

array

8

9 // Accessing array elements via pointer

10 for (int i = 0; i < 3; i++) {

11 cout << "Element " << i << ": " << arr[i] << endl;

12 cout << "Element " << i << ": " << *(ptr + i) << endl;

13 }

14

15 return 0;

16 }

© 2025 Nitesh Kumar. All rights reserved. 35

Chapter 2. Introduction to C++

2.13 Dynamic list Example

In this example, we need to manage the scores of a class of students. Since the number of
students is unknown at compile-time, we will use dynamic memory allocation to create
an array to store their scores at runtime. This demonstrates how pointers are used in
dynamic memory management.

1 // Example: Managing a dynamic list of student scores

2 #include <iostream >

3 using namespace std;

4

5 int main() {

6 int numStudents;

7

8 // Asking the user for the number of students

9 cout << "Enter the number of students: ";

10 cin >> numStudents;

11

12 // Dynamically allocating an array to store student scores

13 float* scores = new float[numStudents];

14

15 // Taking input for student scores

16 for(int i = 0; i < numStudents; ++i) {

17 cout << "Enter score for student " << i+1 << ": ";

18 cin >> scores[i];

19 }

20

21 // Calculating the average score

22 float sum = 0;

23 for(int i = 0; i < numStudents; ++i) {

24 sum += scores[i];

25 }

26 float average = sum / numStudents;

27

28 // Displaying the average score

29 cout << "Average score: " << average << endl;

30

31 // Freeing the dynamically allocated memory

32 delete [] scores;

33

34 return 0;

35 }

2.13.1 Explanation

In this program, the number of students is provided by the user at runtime. The program
dynamically allocates memory for the student scores using a pointer. The key steps are
as follows:

• Dynamic Memory Allocation: new float[numStudents] allocates memory for
an array of floats based on the number of students entered by the user. This is useful

© 2025 Nitesh Kumar. All rights reserved. 36

Chapter 2. Introduction to C++

when the size of data is not known during compile-time.

• Pointer Usage: The pointer scores stores the address of the first element of the
dynamically allocated array. The notation scores[i] is used to access the array
elements. This is equivalent to *(scores + i), where pointer arithmetic is applied
to traverse the memory.

• Memory Deallocation: The program uses delete[] to free the dynamically
allocated memory after it is no longer needed, preventing memory leaks.

2.14 Significance of Using Pointers

Pointers in C++ are crucial for dynamic memory management, which provides several
benefits in real-world applications:

• Efficient Memory Usage: Pointers allow for dynamic allocation of memory,
meaning we can allocate memory based on actual needs at runtime. This avoids
wastage of memory that occurs when arrays are declared with a fixed size at compile-
time.

• Flexibility: Since the size of the array is determined at runtime, the program can
handle variable amounts of data. This is particularly important when dealing with
user input or data that fluctuates during program execution.

• Performance: Pointers can directly access and manipulate memory, making them
more efficient in scenarios where performance is critical, such as handling large
datasets, network buffers, or game engines.

• Dynamic Data Structures: Many advanced data structures like linked lists,
trees, and graphs rely on pointers to manage memory and relationships between
elements. These structures are widely used in algorithm design and systems pro-
gramming.

© 2025 Nitesh Kumar. All rights reserved. 37

Chapter 2. Introduction to C++

Exercise

Category 1: Easy (Conceptual and Memory-Based)

1. What are the main features of C++ that make it suitable for systems programming
and real-time applications?

2. Briefly explain the difference between procedural programming and object-oriented
programming.

3. What is the purpose of the int main() function in a C++ program?

4. List the basic data types in C++ and provide an example of how to declare each.

5. What is the significance of the #include directive in C++?

6. Why is the semicolon (;) important in C++? Provide an example of its usage.

7. What is the difference between an array and a vector in C++?

8. Describe the role of the Standard Template Library (STL) in C++.

9. What are the key features of object-oriented programming supported by C++?

10. Explain the importance of the fstream library in C++ file handling.

Category 2: Mid-Level (Understanding-Based)

1. Write a simple C++ program to print the Fibonacci sequence up to n terms, where
n is input by the user.

2. Describe how a switch-case statement works in C++. Provide an example of its
usage.

3. Compare and contrast for, while, and do-while loops in C++.

4. Write a C++ function to calculate the factorial of a number using recursion.

5. How do pointers work in C++? Write a program to demonstrate the use of pointers
to access and modify an integer variable.

6. Explain how to dynamically allocate and deallocate memory for an array in C++
using pointers.

7. Describe the difference between ifstream and ofstream. Provide an example of
each.

8. Write a program to demonstrate the usage of vectors in C++ for storing and ma-
nipulating a list of integers.

9. How does operator overloading work in C++? Write a program to overload the +

operator for adding two complex numbers.

10. Explain the use of templates in C++ with an example of a function template for
swapping two variables.

© 2025 Nitesh Kumar. All rights reserved. 38

Chapter 2. Introduction to C++

Category 3: Application-Based (Flowchart and Coding)

1. Write the algorithm and draw a flowchart to compute the roots of a quadratic
equation using the quadratic formula. Implement it in C++.

2. Create a flowchart and write a program to simulate the motion of a pendulum using
simple harmonic motion equations.

3. Develop an algorithm and flowchart to compute the dot product of two vectors.
Implement the solution in C++.

4. Create a flowchart and program to simulate the motion of a projectile given initial
velocity and angle of projection.

5. Write a program to solve a system of linear equations using matrices and Gaussian
elimination. Provide the algorithm and flowchart.

6. Develop an algorithm and flowchart to compute the numerical integration of a
function using Simpson’s rule. Write the corresponding C++ code.

7. Write the algorithm and create a flowchart to calculate the electric field at a point
due to multiple charges in 2D space. Implement it in C++.

8. Design a flowchart and write a C++ program to simulate a simple 2D random walk
of a particle.

9. Create an algorithm and flowchart for managing a dynamic list of student scores,
including input, average calculation, and memory deallocation. Implement it in
C++.

10. Write an algorithm and flowchart for generating the first n terms of a geometric
progression, then implement the program in C++.

© 2025 Nitesh Kumar. All rights reserved. 39

Chapter 2. Introduction to C++

© 2025 Nitesh Kumar. All rights reserved. 40

Chapter 3

Introduction to Gnuplot

3.1 Overview

Gnuplot is a portable command-line driven graphing utility for visualizing mathematical
functions and data. It supports various types of plots in both 2D and 3D and can output
to multiple formats, including PNG, PDF, SVG, and LaTeX. Gnuplot is widely used for
its flexibility and ability to produce publication-quality graphics. Its versatility makes
it a favorite among scientists, engineers, and data analysts for creating detailed and
customizable visualizations.

3.2 Getting Started with Gnuplot

To begin using Gnuplot, ensure it is installed on your system. You can download it from
the official website: http://www.gnuplot.info/. After installation, launch the Gnuplot
command-line interface by typing gnuplot in your terminal.

3.3 Plotting Mathematical Functions

Gnuplot allows for straightforward plotting of mathematical functions. For example, to
plot the sine function:

1 gnuplot > plot sin(x)

This command will display a 2D plot of sin(x) over a default range. To specify a
range for the x-axis:

1 gnuplot > plot [-10:10] sin(x)

You can also plot more complex functions, such as:

1 gnuplot > plot sin(x)/x

This will plot the sinc function, which is commonly used in signal processing.

3.4 Plotting Data from Files

Gnuplot can plot data from files where data is organized in columns. Consider a data file
named data.dat with the following content:

41

http://www.gnuplot.info/

Chapter 3. Introduction to Gnuplot

1 # X Y

2 1 2

3 2 4

4 3 6

5 4 8

6 5 10

To plot this data:

1 gnuplot > plot ’data.dat’ using 1:2 with linespoints

This command tells Gnuplot to plot the first column as the x-axis and the second
column as the y-axis, using lines and points to represent the data.

3.5 Customizing Plots

Gnuplot offers various customization options:

• Titles and Labels: Add titles and axis labels to your plot.

1 gnuplot > set title "Sample Data Plot"

2 gnuplot > set xlabel "X-axis"

3 gnuplot > set ylabel "Y-axis"

4

• Grid and Key (Legend): Enable grid lines and position the legend.

1 gnuplot > set grid

2 gnuplot > set key right top

3

• Output to Files: Save plots to files in various formats.

1 gnuplot > set terminal png

2 gnuplot > set output ’plot.png’

3 gnuplot > replot

4 gnuplot > set output

5

• Line Styles and Colors: Customize the appearance of your plots by changing
line styles and colors.

1 gnuplot > plot sin(x) with lines linecolor rgb "blue"

linewidth 2

2

• Multiple Plots: Create multiplot layouts to display several plots in one figure.

1 gnuplot > set multiplot layout 2,1

2 gnuplot > set title ’sin(x)’

3 gnuplot > plot sin(x)

© 2025 Nitesh Kumar. All rights reserved. 42

Chapter 3. Introduction to Gnuplot

4 gnuplot > set title ’cos(x)’

5 gnuplot > plot cos(x)

6 gnuplot > unset multiplot

7

3.6 Advanced Plotting Techniques

Example 1: Plotting Multiple Functions

To plot multiple functions on the same graph:

1 gnuplot > plot sin(x) title ‘sin(x)‘, cos(x) title ‘cos(x)’

This command plots both sin(x) and cos(x) with respective titles.

Example 2: 3D Plotting

Gnuplot can create 3D plots using the splot command:

1 gnuplot > set hidden3d

2 gnuplot > splot sin(x)*cos(y) title ‘sin(x)cos(y)’

This will render a 3D surface plot of the function sin(x) cos(y). You can also add
contour lines to your 3D plot:

1 gnuplot > set contour

2 gnuplot > splot sin(x)*cos(y)

Example 3: Plotting Data with Error Bars

If your data file data with errors.dat includes errors:

1 # X Y Y_Error

2 1 2 0.1

3 2 4 0.2

4 3 6 0.1

5 4 8 0.3

6 5 10 0.2

Plot with error bars using:

1 gnuplot > plot "data_with_errors.dat" using 1:2:3 with yerrorbars

This command plots the data points with vertical error bars.

Example 4: Histograms

Gnuplot can also create histograms. Suppose you have a data file histogram.dat:

1 # Bin Frequency

2 1 5

3 2 10

4 3 7

© 2025 Nitesh Kumar. All rights reserved. 43

Chapter 3. Introduction to Gnuplot

5 4 12

6 5 8

To create a histogram:

1 gnuplot > set style data histograms

2 gnuplot > plot ’histogram.dat’ using 2:xtic (1)

This will plot a histogram with the frequency on the y-axis and the bin numbers on
the x-axis.

Example 5: Polar Plots

Gnuplot supports polar plots, which are useful for visualizing data in polar coordinates.
To create a polar plot:

1 gnuplot > set polar

2 gnuplot > set grid polar

3 gnuplot > plot sin(2*t)

This will plot the function sin(2t) in polar coordinates.

Example 6: Animations

Gnuplot can create animations by generating a series of plots and combining them into
an animated GIF. For example, to create an animation of a sine wave:

1 gnuplot > set terminal gif animate

2 gnuplot > set output ’sine_wave.gif’

3 gnuplot > do for [i=0:100] {

4 plot sin(x + i*0.1)

5 }

6 gnuplot > set output

This script generates 100 frames of a sine wave with a shifting phase and saves them
as an animated GIF.

Gnuplot is a powerful tool for creating a wide variety of plots and visualizations.
Its flexibility and customization options make it suitable for both simple and complex
plotting tasks. Whether you are plotting mathematical functions, data from files, or
creating advanced 3D plots and animations, Gnuplot provides the tools you need to
produce high-quality graphics. With practice, you can unlock the full potential of Gnuplot
and create stunning visualizations for your data and research.

3.7 Data Analysis using Gnuplot

Gnuplot is a versatile command-line tool for data visualization and analysis. It is widely
used in scientific research for generating high-quality plots and performing advanced data
analysis.

© 2025 Nitesh Kumar. All rights reserved. 44

Chapter 3. Introduction to Gnuplot

3.7.1 Installation

To install Gnuplot, use:

1 sudo apt -get install gnuplot # On Debian -based systems

2 brew install gnuplot # On macOS with Homebrew

3.7.2 Basic Usage

To quickly visualize a mathematical function, use:

1 gnuplot > plot sin(x)

This plots the sine function over the default range.

3.7.3 Example 1: Plotting Data from a File

Suppose we have a data file data.txt with the following content:

1 # X Y

2 1 2

3 2 3

4 3 5

5 4 4

6 5 6

Plot the data with lines and points:

1 gnuplot > plot ’data.txt’ using 1:2 with linespoints title ’Data

Plot’

3.7.4 Example 2: Fitting a Curve to Data

Gnuplot supports fitting functions to data using non-linear least squares fitting:

1 gnuplot > f(x) = a * x + b

2 gnuplot > fit f(x) ’data.txt’ using 1:2 via a, b

3 gnuplot > plot ’data.txt’ using 1:2 title ’Data’, f(x) title ’

Fitted Line’

3.7.5 Example 3: 3D Data Visualization

For 3D data, use the splot command:

1 gnuplot > splot ’3d_data.txt’ using 1:2:3 with points palette

3.7.6 Example 4: Histogram Plotting

To create histograms, Gnuplot can bin data using smooth freq:

© 2025 Nitesh Kumar. All rights reserved. 45

Chapter 3. Introduction to Gnuplot

1 gnuplot > set style data histograms

2 gnuplot > set style fill solid border -1

3 gnuplot > plot ’data.txt’ using 2:xtic (1) smooth freq with boxes

title ’Histogram ’

3.7.7 Example 5: Statistical Analysis

Gnuplot can calculate basic statistics like mean and standard deviation:

1 gnuplot > stats ’data.txt’ using 2 name ’A’

2 gnuplot > print "Mean: ", A_mean

3 gnuplot > print "Standard Deviation: ", A_stddev

3.7.8 Example 6: Data Transformation and Scripting

Gnuplot can perform in-line data transformations:

1 gnuplot > plot ’data.txt’ using 1:($2**2) with lines title ’

Squared Y values ’

For scripting, save commands in a file (e.g., script.gp) and run:

1 gnuplot script.gp

3.7.9 Example 7: Multiplot Layouts

To create a grid of plots in a single output:

1 gnuplot > set multiplot layout 2,2 title "Multiplot Example"

2 gnuplot > plot sin(x) title ’Sine’

3 gnuplot > plot cos(x) title ’Cosine ’

4 gnuplot > plot tan(x) title ’Tangent ’

5 gnuplot > plot x**2 title ’Parabola ’

6 gnuplot > unset multiplot

3.7.10 Example 8: Heatmaps

To visualize data density, Gnuplot offers heatmaps:

1 gnuplot > set pm3d map

2 gnuplot > splot ’heatmap_data.txt’ matrix with pm3d

3.7.11 Example 9: Error Bars

For datasets with uncertainties, use error bars:

1 gnuplot > plot ’error_data.txt’ using 1:2:3 with yerrorbars title

’Data with Errors ’

© 2025 Nitesh Kumar. All rights reserved. 46

Chapter 3. Introduction to Gnuplot

3.7.12 Example 10: Exporting Plots

To export a plot as a PNG image:

1 gnuplot > set terminal pngcairo

2 gnuplot > set output ’plot.png’

3 gnuplot > plot ’data.txt’ using 1:2 with lines title ’Data Plot’

4 gnuplot > set output

You can also export to other formats like PDF, SVG, or EPS by changing the terminal
type.

3.8 Statistical Data Analysis with GNUPLOT

Gnuplot is a versatile plotting utility that, beyond generating graphs, can perform basic
statistical analysis. In these notes, we explain how to:

• Compute basic statistics such as maximum, minimum, and mean.

• Perform simple (univariate) regression.

• Fit multivariate regression models.

• Smooth data to reduce noise and reveal trends.

Each section includes code snippets that can be executed in Gnuplot.

3.9 Basic Statistical Analysis

Gnuplot’s stats command processes data files to compute various statistics.

3.9.1 Example Data File

Suppose we have a data file data.txt containing a single column of numbers:

1 1.2

2 3.4

3 2.5

4 4.0

5 0.9

3.9.2 Computing Minimum, Maximum, and Mean

The stats command computes several statistics and assigns them to variables. For
example:

1 stats "data.txt" using 1 name "A"

2 print A_min # Displays the minimum value

3 print A_max # Displays the maximum value

4 print A_mean # Displays the mean (average)

Here, the prefix A is used to store the computed values, such as:

© 2025 Nitesh Kumar. All rights reserved. 47

Chapter 3. Introduction to Gnuplot

• A min: Minimum value.

• A max: Maximum value.

• A mean: Mean of the data.

3.10 Regression Analysis

Gnuplot can fit functions to data. We discuss both simple linear regression and an
example of multivariate regression.

3.10.1 Simple Regression

Simple regression fits a straight line to data. Consider a data file regression.txt with
two columns:

1 # x y

2 1 2.1

3 2 3.9

4 3 6.1

5 4 8.0

6 5 10.2

Fitting a Line

Define a linear function and use the fit command to determine its parameters:

1 f(x) = a*x + b

2 fit f(x) "regression.txt" using 1:2 via a,b

After fitting, you can plot both the raw data and the fitted function:

1 plot "regression.txt" using 1:2 title "Data" with points , \

2 f(x) title sprintf("Fit: y = %.2fx + %.2f", a, b) with lines

3.10.2 Multivariate Regression

While Gnuplot is primarily a plotting tool, it can also handle models with more than one
independent variable. Consider a data file multivar.txt with three columns:

1 # x y z

2 1 2 3.1

3 2 3 5.8

4 3 4 8.2

5 4 5 10.5

6 5 6 13.0

Assume a linear model of the form:

z = a x+ b y + c

Define the model in Gnuplot and fit the data:

© 2025 Nitesh Kumar. All rights reserved. 48

Chapter 3. Introduction to Gnuplot

1 model(x,y) = a*x + b*y + c

2 fit model(x,y) "multivar.txt" using 1:2:3 via a,b,c

After the fit, the variables a, b, and c will contain the optimized parameters.

Notes on Multivariate Regression

Keep in mind that while Gnuplot can handle such fits, it is not designed as a full-
fledged statistical analysis package. For more complex multivariate analyses, consider
using software like R or Python with libraries such as statsmodels.

3.11 Data Smoothing

Data smoothing helps reduce noise and highlight underlying trends. Gnuplot provides
several smoothing options when plotting.

3.11.1 Smoothing Methods

Some common smoothing techniques in Gnuplot include:

• csplines: Cubic spline interpolation.

• acsplines: Adjusted cubic spline interpolation.

• bezier: Bezier curve smoothing.

• unique: Smoothing by eliminating duplicate points.

3.11.2 Example: Cubic Spline Smoothing

For a noisy data file noisy.txt, you can plot with cubic spline smoothing:

1 plot "noisy.txt" using 1:2 with lines smooth csplines title "

Cubic Spline Smoothing"

3.11.3 Example: Bezier Smoothing

Alternatively, use Bezier smoothing:

1 plot "noisy.txt" using 1:2 with lines smooth bezier title "Bezier

Smoothing"

Extra: C++ Code to generate noisy data

This C++ program generates a file named noisy.txt containing noisy data points based
on the equation y = 2x + 3 with added random noise. The output file can be used in
Gnuplot for plotting and analysis.

Below is the C++ program:

© 2025 Nitesh Kumar. All rights reserved. 49

Chapter 3. Introduction to Gnuplot

1 #include <iostream >

2 #include <fstream >

3 #include <cstdlib >

4 #include <ctime >

5

6 using namespace std;

7

8 int main() {

9 // Seed the random number generator

10 srand(time (0));

11

12 // Open file for writing

13 ofstream outFile("noisy.txt");

14 if (! outFile) {

15 cerr << "Error: Could not create noisy.txt" << endl;

16 return 1;

17 }

18

19 // Generate noisy data (x, y)

20 int numPoints = 50; // Number of data points

21 double noiseRange = 2.0; // Maximum noise deviation

22

23 for (int i = 1; i <= numPoints; ++i) {

24 double x = i;

25 double noise = ((rand() % 1000) / 500.0 - 1.0) *

noiseRange; // Random noise between -2 and 2

26 double y = 2 * x + 3 + noise; // y = 2x + 3 with noise

27 outFile << x << " " << y << endl;

28 }

29

30 outFile.close();

31 cout << "noisy.txt has been created successfully!" << endl;

32 return 0;

33 }

Usage

Compile and run the program using:

1 g++ noisy_generator.cpp -o noisy_generator

2 ./ noisy_generator

This will generate noisy.txt, which contains noisy data for further analysis.

3.12 Conclusion

These notes provided an overview of statistical analysis with Gnuplot:

• Basic statistics: Using stats to compute minimum, maximum, and mean.

© 2025 Nitesh Kumar. All rights reserved. 50

Chapter 3. Introduction to Gnuplot

• Regression: Fitting simple linear models and a basic example of multivariate
regression.

• Data Smoothing: Applying smoothing techniques such as cubic splines and Bezier
curves.

This guide serves as a starting point for exploring Gnuplot’s capabilities for both visual-
ization and basic data analysis.

© 2025 Nitesh Kumar. All rights reserved. 51

Chapter 3. Introduction to Gnuplot

Exercise

Category 1: Easy (Conceptual and Memory-Based)

1. What is Gnuplot, and what are its primary uses?

2. List three types of plots that Gnuplot can generate.

3. How can you set the title of a plot in Gnuplot?

4. Describe the purpose of the set xlabel and set ylabel commands.

5. What command is used to plot a mathematical function in Gnuplot?

6. What is the default output format for Gnuplot plots?

7. How do you enable grid lines in a Gnuplot plot?

8. What is the purpose of the set key command in Gnuplot?

9. How do you exit the Gnuplot command-line interface?

10. What is the purpose of the replot command in Gnuplot?

Category 2: Mid-Level (Understanding-Based)

1. Explain how to plot data from a file in Gnuplot. What does the using keyword
specify?

2. How can you customize the range of the x-axis and y-axis in a plot?

3. Describe the steps to save a plot as a PNG file.

4. What is the difference between the plot and splot commands?

5. How can you add a legend to your plot, and where can it be positioned?

6. What is the purpose of the set terminal command in Gnuplot?

7. How do you plot multiple functions on the same graph in Gnuplot?

8. Explain how to create a histogram in Gnuplot using a data file.

9. What is the purpose of the set hidden3d command in 3D plotting?

10. How do you plot data with error bars in Gnuplot?

© 2025 Nitesh Kumar. All rights reserved. 52

Chapter 3. Introduction to Gnuplot

Category 3: Application-Based

1. Create a Gnuplot script to plot the function f(x) = e−x2
over the range [−2 : 2].

2. Given a data file experiment.dat with three columns (time, measurement, error),
write a Gnuplot command to plot the measurements with error bars.

3. Write a Gnuplot script to generate a 3D surface plot of z = sin(x)× cos(y).

4. How would you modify the appearance of the plot to use lines instead of points for
data visualization?

5. Develop a Gnuplot script to plot multiple datasets from different files on the same
graph, each with a distinct style and title.

6. Create a Gnuplot script to plot a polar graph of r = sin(2θ).

7. Write a Gnuplot script to generate an animated GIF of a sine wave with a shifting
phase.

8. Given a data file histogram.dat with two columns (bin, frequency), create a his-
togram using Gnuplot.

9. Write a Gnuplot script to create a multiplot layout with two plots: one for sin(x)
and another for cos(x).

10. Develop a Gnuplot script to plot a function with custom line color, line width, and
point style.

11. The Bessel functions of the first kind, Jn(x), satisfy the recurrence relations:

Jn−1(x) + Jn+1(x) = (2n+ 1)
Jn(x)

x
,

Given the first two functions:

J0(x) =
sin(x)

x
,

J1(x) =
sin(x)

x2
− cosx

x
,

use the recurrence relations to compute and plot J2(x), J3(x), and J4(x) for 0 ≤
x ≤ 10.

© 2025 Nitesh Kumar. All rights reserved. 53

Chapter 3. Introduction to Gnuplot

© 2025 Nitesh Kumar. All rights reserved. 54

Chapter 4

Introduction to LATEX

4.1 Introduction to LATEX

LATEX is a powerful typesetting system extensively used in academia, especially for sci-
entific documents that involve complex mathematical equations, figures, and references.
It allows users to focus on the content while managing the formatting and layout effi-
ciently. Unlike WYSIWYG (what you see is what you get) editors like Microsoft Word,
LATEX operates using plain text markup, which means you define structure and style using
commands.

Key features of LATEX include:

• Precise control over document formatting.

• Easy management of bibliographies, references, and citations.

• Automatic numbering and cross-referencing.

• Superior handling of mathematical formulas.

This document will guide you through the basics of LATEX and demonstrate how to
create well-structured documents with high-quality formatting.

4.2 Getting Started with LATEX

4.2.1 Installing LATEX

LATEX is available on most platforms:

1. Windows: Use MikTeX or TeX Live.

2. Mac: Install MacTeX.

3. Linux: Install via package managers, e.g., sudo apt-get install texlive-full.

Popular editors:

• TeXworks (included with MikTeX).

• Overleaf (online collaborative LATEX editor).

• Texmaker or VS Code with LATEX plugins.

55

Chapter 4. Introduction to LATEX

4.2.2 First LATEX Document

A typical LATEX document contains a preamble and a body. Below is an example of a
basic document:

LaTeX Code:

1 \documentclass{article}

2 \usepackage[utf8]{ inputenc}

3

4 \title{My First Document}

5 \author{John Doe}

6 \date{\ today}

7

8 \begin{document}

9 \maketitle

10

11 Hello , this is my first

document created with \

LaTeX.

12 \end{document}

13

Output:

My First Document

John Doe

May 23, 2025

Hello, this is my first document
created with LATEX.

To compile this, run pdflatex and a PDF will be generated.

4.3 The Preamble and Body of a LATEX Document

A LATEX document consists of two main parts: the preamble and the body.

4.3.1 The Preamble

The preamble is the part of the document before the \begin{document} command. It is
used to set up the overall structure and formatting of the document. Key components of
the preamble include:

• \documentclass{...}: This command defines the type of document you are writ-
ing (e.g., article, report, book, etc.). You can also pass options to modify the
appearance of the document, such as font size or paper size:

1 \documentclass [12pt , a4paper]{ article}

2

• \usepackage{...}: This command imports additional packages to enhance the
functionality of your document. For example, to support UTF-8 character encoding
or to add mathematical capabilities:

1 \usepackage[utf8]{ inputenc}

2 \usepackage{amsmath}

3

• Title information commands:

© 2025 Nitesh Kumar. All rights reserved. 56

Chapter 4. Introduction to LATEX

– \title{...}: Sets the document title.

– \author{...}: Sets the author’s name.

– \date{...}: Sets the date. You can use \today to automatically insert the
current date.

These settings are later used when the \maketitle command is called in the body
of the document.

4.3.2 The Body

The body of the document begins after the \begin{document} command. This is where
the actual content of your document is written. You can include sections, text, lists,
tables, figures, equations, and other elements. Here is an example of a simple document
body:

1 \begin{document}

2 \maketitle

3

4 This is the body of the document. You can add sections like this:

5 \section{Introduction}

6 This is an introduction to my document.

7

8 You can also include mathematical equations , figures , and tables

here.

9 \end{document}

The body ends with the \end{document} command, which signals the end of the
document.

4.4 Document Structure

4.4.1 Basic Structure

A LATEX document is organized using sections, subsections, and paragraphs. Here’s a
quick example:

LaTeX Code:

1 \section{Introduction}

2 This is the introduction.

3

4 \subsection{Background}

5 This is the background.

6

7 \subsubsection{Details}

8 Further details go here.

9

10 \paragraph{Note} This is a

note.

11

Output:

1. Introduction

This is the introduction.

1.1 Background

This is the background.

1.1.1 Details

Further details go here.

Note This is a note.

© 2025 Nitesh Kumar. All rights reserved. 57

Chapter 4. Introduction to LATEX

4.4.2 Lists

Unordered List:

1 \begin{itemize}

2 \item First item

3 \item Second item

4 \end{itemize}

Output:

• First item

• Second item

Ordered List:

1 \begin{enumerate}

2 \item First item

3 \item Second item

4 \end{enumerate}

Output:

1. First item

2. Second item

4.5 Mathematical Typesetting

4.5.1 Inline Math

Inline math is simple to include. For example, the equation of a line can be written as
follows:

1 The equation of a line is $y = mx + c$.

Output:

The equation of a line is y = mx+ c.

4.5.2 Displayed Equations

For more complex math that needs its own line, use displayed math:

1

2 $$ E = mc^2 $$

Output:

E = mc2

© 2025 Nitesh Kumar. All rights reserved. 58

Chapter 4. Introduction to LATEX

4.5.3 Complex Equations

Integrals can be written as:

1 $$ \int_a^b f(x) dx $$

Output:

∫ b

a

f(x)dx

For more advanced math, use the amsmath package:

1 \documentclass{article}

2 \usepackage{amsmath}

3 % other packages in preamble

4

5 \begin{document}

6

7 % Your code

8

9

10 \end{document}

The amsmath package allows for advanced mathematical formatting. After including
this package, you can use environments like align, gather, and more.

Complex Equations Using the align Environment

align: The align environment is used for aligning equations at the equal sign or other
relation symbols:

LaTeX Code:

1 \begin{align}

2 \int _0^{\ infty} e^{-x} \, dx &= 1 \\

3 \frac{d}{dx}(x^2) &= 2x \\

4 \lim_{x \to 0} \frac{\sin x}{x} &= 1 \\

5 e^{i\pi} + 1 &= 0

6 \end{align}

Output:∫ ∞

0

e−x dx = 1 (4.1)

d

dx
(x2) = 2x (4.2)

lim
x→0

sinx

x
= 1 (4.3)

eiπ + 1 = 0 (4.4)

© 2025 Nitesh Kumar. All rights reserved. 59

Chapter 4. Introduction to LATEX

Complex Equations Using the gather Environment

The following equations include integrals, differentiation, and other mathematical sym-
bols:

1 \begin{gather}

2 \int_{a}^{b} f(x) \, dx = F(b) - F(a) \\

3 \frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0 \\

4 \sum_{n=1}^{\ infty} \frac {1}{n^2} = \frac{\pi ^2}{6} \\

5 \sqrt{a^2 + b^2} = c

6 \end{gather}

Output:∫ b

a

f(x) dx = F (b)− F (a) (4.5)

d2y

dx2
+ p

dy

dx
+ qy = 0 (4.6)

∞∑
n=1

1

n2
=

π2

6
(4.7)

√
a2 + b2 = c (4.8)

4.6 Figures and Tables

4.6.1 Inserting Figures

To include images in your LaTeX document, you need to use the graphicx package,
which provides commands for handling graphics and images.

Include the graphicx Package

First, ensure you have the following line in the preamble of your document:

1 \usepackage{graphicx}

Inserting a Figure

To insert a figure, you use the figure environment. Below is the basic syntax:

1 \begin{figure }[h!]

2 \centering

3 \includegraphics[width =0.75\ textwidth]{image.png}

4 \caption{Sample Image}

5 \label{fig:image1}

6 \end{figure}

• Figure Environment: The figure environment is a floating container for figures,
which allows LaTeX to place the figure at an optimal location in the document. The

© 2025 Nitesh Kumar. All rights reserved. 60

Chapter 4. Introduction to LATEX

optional argument [h!] suggests that LaTeX should place the figure “here,” but
it can be overridden to maintain document flow.

• \centering: This command centers the figure within the figure environment.

• \includegraphics: This command is used to include the actual image file. The
width parameter can be specified as a relative value (e.g., 0.75\textwidth to make
the image three quarter the width of the text area) or as an absolute dimension.

• \caption: This command provides a caption for the figure that appears below the
image, helping to explain or describe it.

• \label: This command creates a reference label for the figure, allowing you to refer
to it elsewhere in your document using \ref{fig:image1}.

Output:

Figure 4.1: UPES

We can refer Figure 4.1 anywhere in the document using it’s label.

Important Notes

• Make sure that the image file (e.g., image.png) is in the same directory as your
.tex file for it to be displayed correctly.

• Adjust the width parameter as needed to fit your document layout.

• The figure environment allows LaTeX to manage the placement of the image,
which might not always be exactly where you placed the code, depending on the
surrounding content. Use placement options like [h!], [t], [b], or combinations
to suggest preferred placement.

4.6.2 Tables

Tables can be created using the tabular environment, which provides a flexible way to
arrange data in rows and columns. The structure of a table is defined using a combination
of alignment specifiers, formatting commands, and optional features.

© 2025 Nitesh Kumar. All rights reserved. 61

Chapter 4. Introduction to LATEX

Basic Structure

The basic structure of a table consists of the following components: - The table environ-
ment, which allows for the placement of the table in a floating manner. - The tabular

environment, which defines the actual content of the table.
Here is an example of a simple table:

1 \begin{table }[h!]

2 \centering

3 \begin{tabular }{|c|c|c|}

4 \hline

5 A & B & C \\

6 \hline

7 1 & 2 & 3 \\

8 4 & 5 & 6 \\

9 \hline

10 \end{tabular}

11 \caption{Sample Table}

12 \label{tab:table1}

13 \end{table}

Output:

A B C
1 2 3
4 5 6

Table 4.1: Sample Table

Components of the Table Example

• table[h!]: This environment wraps the table and allows it to float in the document.
The optional argument [h!] suggests placing the table ”here” if possible.

• \centering: Centers the table on the page.

• tabular{|c|c|c|}: This command defines the table structure. The | character adds
vertical lines between the columns, and c denotes center alignment for each column.
You can also use l for left alignment and r for right alignment.

• \hline: Inserts a horizontal line in the table, creating a clear separation between
rows.

• A & B & C \\: This line specifies the first row of the table. The ampersand &

separates the columns, and the double backslash \\ indicates the end of the row.

• \caption{Sample Table}: Provides a caption for the table that appears above or
below the table, depending on the document class and settings.

• \label{tab:table1}: This command creates a reference label for the table, allow-
ing you to refer to it elsewhere in the document using \ref{tab:table1}.

© 2025 Nitesh Kumar. All rights reserved. 62

Chapter 4. Introduction to LATEX

Customizing Tables

You can customize tables in several ways:

1. Changing Column Widths: You can adjust the width of columns using the
pwidth specifier instead of c, l, or r. For example, p3cm sets a fixed width for a
column:

1 \begin{tabular }{|p{3cm}|p{3cm}|p{3cm}|}

2 \hline

3 Long text in a column & Another column & More text \\

4 \hline

5 \end{tabular}

6

Output:

Long text in a
column

Another column More text

Table 4.2: My Caption

2. Merging Cells: To merge cells horizontally, you can use the \multirow or \multicolumn
commands from the multirow package. Example of merging two columns:

1 \usepackage{multirow} % IN PREAMBLE (BEFORE \begin{document })

2

3 \begin{table }[!h]

4 \centering

5 \begin{tabular }{|c|c|}

6 \hline

7 \multicolumn {2}{|c|}{ Merged Cell} \\

8 \hline

9 1 & 2 \\

10 3 & 4 \\

11 \hline

12 \end{tabular}

13 \caption{Merged cells table}

14 \label{tab:my_label _2}

15 \end{table}

16

Output:

Merged Cell
1 2
3 4

Table 4.3: Merged cells table

3. Adding Borders and Color: You can enhance the appearance of tables using
the booktabs package, which provides commands like \toprule, \midrule, and
\bottomrule for cleaner horizontal lines:

© 2025 Nitesh Kumar. All rights reserved. 63

Chapter 4. Introduction to LATEX

1 \usepackage{booktabs} % IN PREAMBLE (BEFORE \begin{document })

2

3 \begin{table }[!h]

4 \centering

5 \caption{Tables using booktabs .}

6 \begin{tabular }{ccc}

7 \toprule

8 A & B & C \\

9 \midrule

10 1 & 2 & 3 \\

11 4 & 5 & 6 \\

12 \bottomrule

13 \end{tabular}

14 \label{tab:my_label _3}

15 \end{table}

16

17

Output:

Table 4.4: Tables using booktabs.

A B C

1 2 3
4 5 6

Example of a More Complex Table

Here’s a more complex example that includes merged cells and custom widths:

1 \begin{table }[h!]

2 \centering

3 \begin{tabular }{|p{4cm}|p{4cm}|c|}

4 \hline

5 \multicolumn {2}{|c|}{ Combined Columns} & Single Column \\

6 \hline

7 Item 1 & Item 2 & Item 3 \\

8 \hline

9 \end{tabular}

10 \caption{Complex Table Example}

11 \label{tab:complex_table}

12 \end{table}

Output:

Combined Columns Single Column
Item 1 Item 2 Item 3

Table 4.5: Complex Table Example

© 2025 Nitesh Kumar. All rights reserved. 64

Chapter 4. Introduction to LATEX

4.7 Cross-referencing and Bibliography

LATEX provides powerful tools for cross-referencing and managing bibliographies. These
features are particularly useful in larger documents like academic papers, theses, or re-
ports, where you often need to refer to figures, tables, sections, or external references.

4.7.1 Cross-referencing

Cross-referencing in LATEX allows you to refer to sections, figures, tables, equations,
and more, without hardcoding specific numbers. This way, if your document structure
changes, all references update automatically.

To set up a cross-reference, you use the \label command to mark a specific element,
and then use \ref or \pageref to refer back to that element.

Cross-referencing Sections

For referencing sections, you can place the \label command immediately after the section
heading. Here’s an example:

1 \section{Introduction }\label{sec:intro}

2

3 This is the introduction to the paper.

4

5 \section{Methodology }\label{sec:method}

6

7 As discussed in Section \ref{sec:intro}, the problem is defined

...

Expected Output
As discussed in Section 1, the problem is defined...

Here, \ref{sec:intro} automatically inserts the section number (“1” in this case)
into the text. If the order of sections changes, the reference will update to reflect the new
numbering.

Cross-referencing Figures and Tables

Cross-referencing is also helpful for figures and tables. Here’s an example for referencing
a figure:

1 \begin{figure }[h!]

2 \centering

3 \includegraphics[width =0.5\ textwidth]{example -image}

4 \caption{An example image .}

5 \label{fig:image1}

6 \end{figure}

7

8 As shown in Figure \ref{fig:image1}, the result is clear.

Expected Output
As shown in Figure 1, the result is clear.

© 2025 Nitesh Kumar. All rights reserved. 65

Chapter 4. Introduction to LATEX

In this case, the \label command inside the figure environment allows you to refer-
ence it using \ref{fig:image1}. The output will insert the figure number (”1” in this
case) automatically.

You can similarly cross-reference tables by labeling them within the table environment:

1 \begin{table }[h!]

2 \centering

3 \begin{tabular }{|c|c|}

4 \hline

5 Item & Description \\

6 \hline

7 A & Example A \\

8 B & Example B \\

9 \hline

10 \end{tabular}

11 \caption{Example Table .}

12 \label{tab:example}

13 \end{table}

14

15 Table \ref{tab:example} shows the details of items.

Expected Output
Table 1 shows the details of items.

Cross-referencing Pages

To refer to the page where an element appears, use the \pageref command. This is
useful for long documents where you want to direct readers to the exact page of a figure,
table, or section:

1 Figure \ref{fig:image1} is found on page \pageref{fig:image 1}.

Expected Output
Figure 1 is found on page 2.

This command inserts the page number of the referenced element.

4.7.2 Bibliography

LATEX is widely used in academic writing due to its excellent citation and bibliography
management. LATEX works with tools like BibTeX and BibLaTeX to handle references
efficiently. BibTeX allows you to manage and format bibliographic data separately, while
BibLaTeX provides more flexibility and modern features.

Basic Bibliography Using BibTeX

To use BibTeX, create a ‘.bib‘ file containing your references. In the main LATEX file,
include the following commands to generate the bibliography:

1 \bibliographystyle{plain}

2 \bibliography{references}

© 2025 Nitesh Kumar. All rights reserved. 66

Chapter 4. Introduction to LATEX

Here, plain is the style of the bibliography, and references is the name of your
bibliography file (e.g., references.bib).

Your .bib file might look like this:

1 @book{lamport 1994 latex ,

2 title ={LaTeX: A Document Preparation System},

3 author ={Lamport , Leslie},

4 year ={1994} ,

5 publisher ={Addison -Wesley}

6 }

7

8 @article{knuth 1984 texbook ,

9 title ={The TeXbook},

10 author ={Knuth , Donald},

11 journal ={ Computers \& Typesetting},

12 volume ={A},

13 year ={1984} ,

14 publisher ={Addison -Wesley}

15 }

When compiling your document, BibTeX automatically formats and adds the references
at the end of your document. Citations can be added using the \cite command:

1 According to \cite{lamport 1994 latex}, \LaTeX {} is a powerful tool

for document preparation.

Expected Output

According to [1], LaTeX is a powerful tool for document preparation.

At the end of your document, BibTeX generates the bibliography:

References

[1] Lamport, Leslie. LaTeX: A Document Preparation System. Addison-Wesley, 1994.

[2] Knuth, Donald. The TeXbook. Addison-Wesley, 1984.

Bibliography Using BibLaTeX

BibLaTeX is an advanced package for managing citations and bibliographies. To use it,
load the package and specify the backend (e.g., biber):

1 \usepackage[backend=biber ,style=numeric]{ biblatex}

2 \addbibresource{references.bib}

This setup allows for more flexible citation styles, including numeric, alphabetic, author-
year, and more. You can then cite sources using the \cite command just like in BibTeX:

1 \cite{knuth 1984 texbook}

At the end of the document, print the bibliography using:

1 \printbibliography

© 2025 Nitesh Kumar. All rights reserved. 67

Chapter 4. Introduction to LATEX

Citation Styles

Both BibTeX and BibLaTeX offer various citation styles. Common ones include:

• plain: Simple numbered style.

• alpha: Citations are based on authors’ initials and publication year.

• ieeetr: IEEE citation style, commonly used in technical and engineering fields.

• apalike: APA-style citations, widely used in social sciences.

For example, to use the APA-like citation style:

1 \bibliographystyle{apalike}

Or, with BibLaTeX:

1 \usepackage[style=apa]{ biblatex}

These commands will automatically format your citations and bibliography according to
the selected style.

4.8 Customizing LATEX Documents

Customization in LATEX allows you to modify the appearance of your document to meet
various formatting requirements. In this section, we’ll cover some essential aspects of
page layout, fonts, and text styles, all of which can be easily adjusted to suit your needs.

4.8.1 Page Layout

The page layout in a LATEX document, such as paper size, margins, and orientation, can
be customized using the geometry package. This package provides flexibility in adjusting
the dimensions of the page to fit specific formatting needs.

To change the paper size and margins, you can specify options directly when loading
the geometry package. Here’s an example for setting A4 paper size and 1-inch margins:

1 \usepackage[a4paper , margin =1in]{ geometry}

Customizing Margins

You can also specify custom margins for different sides of the page. For example, to set a
2-inch top margin, 1-inch bottom margin, 1.5-inch left margin, and 1-inch right margin,
use:

1 \usepackage[top=2in, bottom =1in, left =1.5in, right =1in]{ geometry}

© 2025 Nitesh Kumar. All rights reserved. 68

Chapter 4. Introduction to LATEX

Changing Paper Size and Orientation

To change the paper size to legal (8.5 x 14 inches) and make it landscape oriented, you
can modify the options as follows:

1 \usepackage[legalpaper , landscape , margin =1in]{ geometry}

Output: The page will be oriented horizontally (landscape) on legal-sized paper with
1-inch margins.

These changes will apply globally across the entire document unless you specify oth-
erwise.

4.8.2 Font and Style

Font customization in LATEX is managed by various packages, such as fontenc for en-
coding and inputenc for character sets. Changing fonts and text styles can improve
readability and give your document a personalized look.

Font Encoding

Using the fontenc package ensures that fonts are properly encoded. For example, to
enable T1 encoding, which allows for proper hyphenation and accented characters, use:

1 \usepackage[T1]{ fontenc}

T1 encoding is essential when working with European languages or documents requir-
ing accented characters.

Changing Fonts

You can change the font family to one of LATEX’s default font families, such as serif,
sans-serif, or monospace, using the following commands:

1 \renewcommand {\ familydefault }{\ sfdefault} % Sans -serif as

default

To use a specific font, such as the popular Times New Roman, you can load the corre-
sponding package:

1 \usepackage{times} % Times New Roman

Output:
The entire document’s font will switch to Times New Roman.
Other common font packages include:

1. helvet for Helvetica (sans-serif)

2. courier for Courier (monospace)

Text Styles

In LATEX, text styles such as bold, italic, and underlined text are easily applied using the
following commands:

1. Bold Text: Use \textbf{...} to make text bold.

© 2025 Nitesh Kumar. All rights reserved. 69

Chapter 4. Introduction to LATEX

1 This is \textbf{bold text}.

Output:

This is bold text.

2. Italic Text: Use \textit{...} to italicize text.

1 This is \textit{italic text}.

2

Output:

This is italic text.

3. Underlined Text: While LATEX doesn’t have a direct underline command, you
can use the ulem package to underline text:

1 \usepackage{ulem}

2 This is \uline{underlined text}.

3

Output:

This is underlined text.

Alternatively, for a simpler underlining solution, you can use the underline com-
mand from standard LATEX:

1 This is \underline{underlined text}.

2

Customizing Font Sizes

Font size can be adjusted globally or locally within the document. To set the font size
for the entire document, modify the document class as follows:

1 \documentclass [12pt]{ article}

This will set the default font size to 12 points.
For local font size adjustments, use the following commands within the document:

• \tiny: Very small text

• \scriptsize: Smaller than small

• \footnotesize: Slightly larger than scriptsize

• \small: Small text

• \large: Slightly larger text

• \Large, \LARGE: Progressively larger text

• \huge, \Huge: Very large text

© 2025 Nitesh Kumar. All rights reserved. 70

Chapter 4. Introduction to LATEX

Example:

1 This is \tiny{tiny text}, and this is \Huge{huge text}.

Output:

This is tiny text, and this is huge text.
By combining these commands, you can customize the look and feel of your document,

ensuring it matches specific formatting guidelines or personal preferences.

4.8.3 Color and Highlighting

In LATEX, the xcolor package is commonly used to apply colors to text and other elements.
You can highlight important sections, change font colors, and even define your own custom
colors.

To load the xcolor package:

1 \usepackage{xcolor}

Changing Text Color

To change the color of specific text, use the \textcolor command. Here’s an example
that sets the text color to red:

1 This is \textcolor{red}{red text}.

Output:
This is red text.

Highlighting Text

You can also highlight text with a background color using the \colorbox command:

1 \colorbox{yellow }{This text is highlighted in yellow .}

Output:
This text is highlighted in yellow.
Customizing LATEX documents provides a great deal of flexibility in terms of page

layout, fonts, text styles, and colors. Using the geometry package, you can control
the page dimensions and margins. Text appearance can be easily managed with font
encodings, font family selection, and local style adjustments like bold, italics, and color.
Together, these tools allow you to craft a professional and visually appealing document.

4.9 Error Handling and Debugging

When working with LATEX, errors can arise during the compilation process. Understand-
ing common error messages and how to resolve them is essential for smooth document
preparation. LATEX editors, such as Overleaf, TeXShop, or TeXworks, provide detailed
logs that can help you trace and fix errors.

In this section, we’ll look at common errors, their causes, and strategies for debugging.

© 2025 Nitesh Kumar. All rights reserved. 71

Chapter 4. Introduction to LATEX

4.9.1 Common LATEX Errors

Here are some of the most common errors you might encounter when compiling a LATEX
document:

Missing or Mismatched Braces

One of the most frequent errors is missing or unmatched braces (i.e., {...}). Every
opening brace { must have a corresponding closing brace }.

Example Error:

1 This is an \textbf{example of missing brace.

The error message may look like this:

! LaTeX Error: \textbf on input line 1 ended by \end{document}.

Solution: Ensure that every { has a matching }. The correct syntax is:

1 This is an \textbf{example of correct brace}.

If you’re dealing with nested braces, carefully check that each pair is properly closed.

Undefined References

Undefined references occur when you try to reference a section, figure, table, or citation
that has not been labeled correctly or is missing entirely. You will see a warning like this
during compilation:

LaTeX Warning: There were undefined references.

Example Error:

1 As shown in Figure \ref{fig:missing}, the results are clear.

If no figure with the label fig:missing exists, you’ll get an error.

Solution: Ensure that you have labeled the element you’re referencing. For example:

1 \begin{figure }[h!]

2 \includegraphics[width =0.5\ textwidth]{example -image}

3 \caption{An example image .}

4 \label{fig:image1}

5 \end{figure}

6

7 As shown in Figure \ref{fig:image1}, the results are clear.

Also, make sure to run multiple compilation steps (e.g., in Overleaf, press ”Recompile”
twice) to resolve cross-references.

© 2025 Nitesh Kumar. All rights reserved. 72

Chapter 4. Introduction to LATEX

Package Errors

Using incorrect or incompatible packages can lead to compilation errors. This happens
if a required package is missing from your LATEX installation or if two packages conflict
with each other.

Example Error: If you try to load a non-existent package:

1 \usepackage{nonexistent}

You will see an error message like this:

! LaTeX Error: File ‘nonexistent.sty’ not found.

Solution: Ensure that the package you’re trying to use is installed or available in your
LATEX distribution. For example, replace it with a valid package:

1 \usepackage{graphicx} % A valid package

For package conflicts, try commenting out one of the conflicting packages or look for
a compatible alternative.

4.9.2 Debugging Tips

Here are some strategies to debug your LATEX documents effectively:

Read the Log File

Most LATEX editors provide a detailed log file that lists all warnings and errors encountered
during compilation. This log can help pinpoint the exact line where the error occurred.
The log will often include the following types of messages:

• Error messages: These are critical and stop the compilation.

• Warnings: These indicate potential issues but do not stop the compilation.

• Overfull/Underfull boxes: These warn about text that overflows or does not
properly fit in the margins.

To view the log, look for the ”Log” or ”Compiler” section in your editor. In Overleaf,
for instance, the log is displayed in a separate window after compilation.

Isolate the Problem

If you’re facing a complex issue and cannot locate the source of the error, try commenting
out large sections of your document. You can use the % symbol to comment out lines of
text or code temporarily:

1 %\section{Introduction}

2 %This section is commented out to isolate the problem.

Once you’ve isolated the error, you can start uncommenting sections one by one to
find the problematic code.

© 2025 Nitesh Kumar. All rights reserved. 73

Chapter 4. Introduction to LATEX

Check for Typos in Labels

Typographical errors in labels are a common cause of undefined references. Double-
check that your labels are spelled correctly and match the references exactly. LATEX is
case-sensitive, so {fig:image1} and {fig:Image1} will be treated as different labels.

Run Multiple Compilation Passes

When using cross-references or bibliographies (especially with BibTeX or BibLaTeX),
LATEX often requires multiple compilation passes to resolve all references. You may need
to run:

1. pdflatex

2. bibtex

3. pdflatex (twice more)

This ensures that all citations and references are updated correctly.

4.9.3 Warnings

While warnings do not stop compilation, they can indicate formatting problems or over-
looked issues. Some common warnings include:

Overfull or Underfull Boxes

These occur when text exceeds the margins (overfull) or does not fill the available space
properly (underfull). The message may look like this:

Overfull \hbox (5.0pt too wide) in paragraph at lines 22--23

Solution: Adjust the text, font size, or use the \sloppy command to relax the format-
ting rules.

Undefined Citations

If a citation is not defined in the bibliography, you’ll see a warning like:

LaTeX Warning: Citation ‘key’ on page 3 undefined.

Solution: Ensure that the citation key matches the reference in your .bib file.

4.9.4 Tools for Error-Free LATEX

Here are some tools and techniques that can help you avoid and fix errors in LATEX
documents:

© 2025 Nitesh Kumar. All rights reserved. 74

Chapter 4. Introduction to LATEX

Online Editors

Using online editors like Overleaf can make error handling easier since they offer real-time
error messages and logs. Overleaf, for example, highlights errors and warnings as you
type, making it easier to identify issues immediately.

lacheck and chktex

These are command-line tools designed to check LATEX documents for common errors and
potential formatting issues. lacheck checks the syntax of your document, while chktex
focuses on typographical issues.

Error handling and debugging are crucial aspects of working with LATEX. By un-
derstanding common errors, reading logs carefully, and using debugging strategies, you
can efficiently resolve issues and ensure smooth compilation. With the right tools and
techniques, error-free LATEX documents are easy to achieve.

4.10 Title Page and Its Customization in LaTeX

The title page is the first page of a LaTeX document, serving as the cover for your
work. It typically includes the title of the document, the author’s name, the institution,
the date, and sometimes additional information like the course name or the supervisor’s
name. Customizing the title page can help create a professional and polished look for
your document.

4.10.1 Basic Title Page

To create a basic title page in LaTeX, you can use the \title, \author, and \date
commands, followed by the \maketitle command. Here’s a simple example:

1 \documentclass{article}

2

3 \title{The Title of Your Document}

4 \author{Your Name}

5 \date{\ today} % Automatically inserts today ’s date

6

7 \begin{document}

8

9 \maketitle % Generates the title page

10

11 \end{document}

4.10.2 Customizing the Title Page

• Changing Fonts and Sizes: You can customize the font size and style of the
title, author, and date by using font commands. For example:

1 \title{\huge \textbf{The Title of Your Document }}

2 \author {\ Large Your Name}

3

© 2025 Nitesh Kumar. All rights reserved. 75

Chapter 4. Introduction to LATEX

• Adding a Logo: If you want to include a logo (e.g., your institution’s logo), you
can use the graphicx package:

1 \usepackage{graphicx}

2

3 \title{\ includegraphics[width =0.5\ textwidth]{logo.png }\\[1 em]

\Huge \textbf{The Title of Your Document }}

4

• Customizing Layout: To further customize the layout of the title page, you can
create your own title page using the titlepage environment. This allows more
flexibility in positioning elements:

1 \begin{titlepage}

2 \centering

3 \vspace *{2cm} % Adds vertical space

4 {\Huge \textbf{The Title of Your Document }}\\[1.5 cm]

5 {\Large Your Name }\\

6 {\large Institution Name }\\

7 {\large \today }\\[2 cm]

8 \includegraphics[width =0.3\ textwidth]{logo.png }\\[1 cm]

9 {\large Course Name }\\

10 {\large Supervisor Name}

11 \vfill

12 \end{titlepage}

13

• Using Packages: You can also explore packages like titling or fancyhdr for
more advanced customization of the title page and headers/footers.

4.10.3 Example of a Customized Title Page

Here’s a complete example with a customized title page:

1 \documentclass{article}

2 \usepackage{graphicx}

3

4 \title{\huge \textbf{The Title of Your Document }}

5 \author {\ Large Your Name}

6 \date{\ today}

7

8 \begin{document}

9

10 \begin{titlepage}

11 \centering

12 \vspace *{2cm}

13 \includegraphics[width =0.3\ textwidth]{logo.png }\\[1.5 cm]

14 {\Huge \textbf{The Title of Your Document }}\\[1.5 cm]

15 {\Large Your Name }\\[0.5 cm]

16 {\large Institution Name }\\[1.5 cm]

17 {\large \today }\\[2 cm]

18 {\large Course Name }\\

© 2025 Nitesh Kumar. All rights reserved. 76

Chapter 4. Introduction to LATEX

19 {\large Supervisor Name}

20 \vfill

21 \end{titlepage}

22

23 \end{document}

Customizing the title page in LaTeX is straightforward, allowing you to create a
visually appealing introduction to your document. With simple commands and environ-
ments, you can adjust the layout, include graphics, and modify text styles to match your
preferences or institutional requirements.

Further Resources

• Overleaf LATEX Documentation: https://www.overleaf.com/learn/latex/Main_
Page

• CTAN (Comprehensive TeX Archive Network): https://ctan.org/

© 2025 Nitesh Kumar. All rights reserved. 77

https://www.overleaf.com/learn/latex/Main_Page
https://www.overleaf.com/learn/latex/Main_Page
https://ctan.org/

Chapter 4. Introduction to LATEX

Exercise

Category 1: Easy (Conceptual and Memory-Based)

1. What is LATEX, and how does it differ fromWYSIWYG editors like Microsoft Word?

2. List three key features of LATEX that make it popular for academic document prepa-
ration.

3. What is the purpose of the preamble in a LATEX document?

4. Describe the function of the following commands in LATEX: \documentclass, \usepackage,
and \maketitle.

5. How can you include mathematical equations in a LATEX document? Provide an
example of an inline equation.

6. What are the differences between ordered and unordered lists in LATEX? Write a
simple example for each.

7. Why is the graphicx package used in LATEX documents?

8. What are the basic components of a title page in LATEX?

9. Explain the difference between \section, \subsection, and \paragraph in struc-
turing a LATEX document.

10. What is the advantage of using \label and \ref commands for cross-referencing
in LATEX?

Category 2: Mid-Level (Understanding-Based)

1. Write a simple LATEX document that includes a title page with a title, author, date,
and a centered image.

2. Describe how the align environment is used for complex equations in LATEX. Pro-
vide an example.

3. How can you customize the margins of a LATEX document? Write the command to
set all margins to 1 inch.

4. Create a simple table using the tabular environment with three columns: Name,
Age, and Country.

5. Explain the difference between \textbf, \textit, and \underline. Write an ex-
ample showing their usage.

6. How can you handle errors like ”undefined references” in a LATEX document? Sug-
gest debugging strategies.

7. Write a LATEX code snippet to display the equation E = mc2 as a standalone
equation.

© 2025 Nitesh Kumar. All rights reserved. 78

Chapter 4. Introduction to LATEX

8. How can you include a bibliography in a LATEX document? Provide the basic steps.

9. Explain how the xcolor package is used to change the color of text in LATEX. Write
an example to display text in red.

10. How can you dynamically create numbered references for figures and tables in
LATEX? Write a small example showing a labeled figure.

Category 3: Application-Based

1. Write a LATEX document to include a centered image, a table, and a displayed
equation.

2. Create a LATEX document for a two-column article layout with separate sections for
Introduction and Conclusion.

3. Write a LATEX document with cross-references to figures, tables, and sections.

4. Insert and reference a figure in a LATEX document. Provide the corresponding LATEX
code.

5. Write a LATEX code snippet for creating a custom title page that includes a title,
author name, date, course, and institution name.

6. Write a LATEX document to demonstrate the use of inline, displayed, and complex
equations (using the amsmath package).

7. Create a LATEX document to manage multiple sections, each containing a figure,
table, and equation.

8. Write a LATEX document to generate a bibliography using BibTeX with at least two
references.

9. Demonstrate how to use the booktabs package for creating professional-looking
tables in LATEX.

10. Write a LATEX document with a custom page layout, including specific margin set-
tings and page orientation.

© 2025 Nitesh Kumar. All rights reserved. 79

Chapter 4. Introduction to LATEX

© 2025 Nitesh Kumar. All rights reserved. 80

Chapter 5

Finding Roots of an Equation

In this chapter, we will explore three fundamental numerical methods for finding roots
of equations: the Bisection Method, the Secant Method, and Newton-Raphson Method.
Each method will be introduced with theoretical concepts, illustrated with examples, and
followed by practice questions to strengthen your understanding.

Introduction to Root-Finding Methods

Root-finding algorithms are essential in numerical analysis for solving equations of the
form f(x) = 0. We will discuss three methods here:

• Bisection Method - a simple and reliable method.

• Secant Method - a faster approach that avoids calculating derivatives.

• Newton-Raphson Method - a powerful method using derivatives for rapid con-
vergence.

5.1 Bisection Method

The Bisection Method is a numerical approach to find a root of a continuous function
f(x) within a specified interval. It is particularly useful when the function changes sign
over an interval, indicating the presence of a root.

5.1.1 Method Explanation

The Bisection Method works as follows:

1. Choose an interval [a, b] such that f(a) · f(b) < 0. This guarantees that there is at
least one root in [a, b].

2. Calculate the midpoint m = a+b
2
.

3. Evaluate f(m). If f(m) = 0, then m is the root. Otherwise, update the interval as
follows:

• If f(a) · f(m) < 0, set b = m.

81

Chapter 5. Finding Roots of an Equation

x

f(x)
f(x)

a

bxmid

f(a) < 0

f(b) > 0

f(xmid)

Initial interval [a, b]

Next interval [a, xmid]

Root

Figure 5.1: Illustration of the Bisection method using the function f(x) = x3 − 9x2 +
23x− 15. The method starts with the interval [a, b], then iteratively bisects the interval
to find the root by checking sign changes in f(x).

• If f(b) · f(m) < 0, set a = m.

4. Repeat the steps until the interval [a, b] is sufficiently small, or until the midpoint
m is accurate to the desired precision.

5.1.2 Example: Finding the Root of f(x) = sinx - x cosx

Let’s find the root of the function f(x) = sinx − x cosx in the interval [4, 5] using the
Bisection Method. We’ll proceed step-by-step, calculating each midpoint and evaluating
the function to see if we’ve narrowed down the root.

Initial Setup

f(x) = sinx− x cosx

Evaluating f(x) at the endpoints:

f(4) = sin(4)− 4 cos(4) ≈ 1.8577719881465196

© 2025 Nitesh Kumar. All rights reserved. 82

Chapter 5. Finding Roots of an Equation

f(5) = sin(5)− 5 cos(5) ≈ −2.3772352019792695

Since f(4) · f(5) < 0, there is a root between x = 4 and x = 5.

Iterative Steps

The following table shows the iterative steps for the Bisection Method applied to f(x) =
sinx− x cosx in the interval [4, 5]:

Iteration a b m = a+b
2

f(a) f(b) f(a) · f(b) Interval Update
1 4 5 4.5 1.85777 -2.37724 -4.42 (< 0) [4,5]
2 4 4.5 4.25 1.85777 -0.02895 -0.05 (< 0) [4,4.5]
3 4.25 4.5 4.375 1.00088 -0.02895 -0.03 (< 0) [4.25,4.5]
4 4.375 4.5 4.4375 0.50461 -0.02895 -0.01 (< 0) [4.375,4.5]
5 4.4375 4.5 4.46875 0.24206 -0.02895 -0.01 (< 0) [4.4375,4.5]
6 4.46875 4.5 4.484375 0.10756 -0.02895 -0.00 (< 0) [4.46875,4.5]
7 4.484375 4.5 4.4921875 0.03955 -0.02895 -0.00 (< 0) [4.484375,4.5]
8 4.4921875 4.5 4.49609375 0.00536 -0.02895 -0.00 (< 0) [4.4921875,4.5]
9 4.4921875 4.49609375 4.494140625 0.00536 -0.01178 -0.00 (< 0) [4.4921875,4.49609375]
10 4.4921875 4.494140625 4.4931640625 0.00536 -0.00321 -0.00 (< 0) [4.4921875,4.494140625]
11 4.4931640625 4.494140625 4.49365234375 0.00108 -0.00321 -0.00 (< 0) [4.4931640625,4.494140625]

Table 5.1: Bisection Method Iterations for f(x) = sin x− x cosx in the interval [4, 5]

Final Answer

After continuing the iterations, we find that the root of f(x) = sin x − x cosx to the
desired precision in the interval [4, 5] is approximately:

x ≈ 4.49365234375

5.1.3 Error Estimation in the Bisection Method

In the Bisection Method, we iteratively narrow down the interval [a, b] that contains the
root. With each iteration, the interval’s length is halved, allowing us to estimate the
error and the convergence rate.

Absolute Error Bound

If we define the root as r, then after n iterations, the interval [an, bn] contains r. The
error in the approximation mn = an+bn

2
, which is the midpoint of the interval, is bounded

by half the interval length:

|mn − r| ≤ bn − an
2

=
b− a

2n

where [a, b] is the initial interval.

As n increases, the interval [an, bn] becomes smaller, leading to a smaller error bound.
This error bound tells us how close our approximation mn is to the actual root r.

© 2025 Nitesh Kumar. All rights reserved. 83

Chapter 5. Finding Roots of an Equation

Number of Iterations for Desired Accuracy

To achieve a specific accuracy ϵ, we can calculate the required number of iterations N as
follows:

N ≥ log2

(
b− a

ϵ

)
This formula allows us to determine the minimum number of iterations needed to ensure
that our approximation is within a specified tolerance ϵ from the true root.

Convergence Rate

The Bisection Method has a convergence rate of O(2−n), which means the error decreases
by approximately half with each iteration. This linear convergence is slower compared to
other methods like the Newton-Raphson Method, which has quadratic convergence, but
the Bisection Method is more robust and guarantees convergence as long as the initial
interval contains a root.

Example of Error Estimation

Suppose we start with an interval [4, 5] and want to find the root of f(x) = sin x−x cosx
to within ϵ = 0.001. Using the formula above, we can estimate the number of iterations
needed:

N ≥ log2

(
5− 4

0.001

)
= log2(1000) ≈ 10

Therefore, at least 10 iterations are required to ensure that the error in our approximation
is less than 0.001.

This error estimation helps us plan the number of iterations in advance and gives con-
fidence that our final approximation is close to the true root within the desired accuracy.

5.1.4 Disadvantages of the Bisection Method

While the bisection method is reliable and simple, it has several limitations:

• Slow Convergence: The bisection method converges linearly, which makes it
slower compared to other methods such as Newton-Raphson that converge quadrati-
cally. This can be a disadvantage when higher accuracy is needed in fewer iterations.

• Requires an Interval with Opposite Signs: The method requires the initial
interval [a, b] to satisfy f(a)f(b) < 0, meaning that a sign change between f(a) and
f(b) is essential. If no such interval is known, the method cannot be applied.

• Not Suitable for Multiple or Complex Roots: The Bisection method can
only find one real root within an interval, and it does not work for complex roots or
multiple roots within the same interval unless the function is redefined or additional
methods are employed.

• Cannot Handle Discontinuous Functions: The method assumes the function is
continuous over the interval [a, b]. If the function has discontinuities, the Bisection
method might fail or produce incorrect results.

© 2025 Nitesh Kumar. All rights reserved. 84

Chapter 5. Finding Roots of an Equation

C++ Code:

1 // C++ program to find the root of a polynomial using Bisection

method

2 #include <iostream >

3 #include <cmath >

4 #include <fstream >

5 using namespace std;

6

7 // Define the polynomial function f(x) = x^3 - x - 2

8 double f(double x) {

9 return x*x*x - x - 2;

10 }

11

12 // Bisection method to find root

13 double BisectionMethod(double a, double b, double tol , ofstream &

outfile) {

14 double mid;

15 int iterations = 0;

16 outfile << "# Iteration\tBisection_Root" << endl;

17 while ((b - a) >= tol) {

18 mid = (a + b) / 2.0;

19 outfile << iterations << "\t" << mid << endl;

20 if (f(mid) == 0.0) // Exact root found

21 break;

22 else if (f(mid) * f(a) < 0)

23 b = mid;

24 else

25 a = mid;

26 iterations ++;

27 }

28 return mid;

29 }

30

31 int main() {

32 double a, b, x0, tol;

33

34 // Open file to store the output

35 ofstream outfile("roots_output.txt");

36

37 // Input interval for Bisection

38 cout << "Enter the interval [a, b] for Bisection method: ";

39 cin >> a >> b;

40

41 // Input initial guess for Newton -Raphson

42 cout << "Enter the initial guess for Newton -Raphson method: "

;

43 cin >> x0;

44

45 // Input tolerance level

46 cout << "Enter the tolerance level: ";

© 2025 Nitesh Kumar. All rights reserved. 85

Chapter 5. Finding Roots of an Equation

47 cin >> tol;

48

49 // Finding root using Bisection Method

50 double bisection_root = BisectionMethod(a, b, tol , outfile);

51

52 return 0;

53 }

Fortran Code:

1 PROGRAM BisectionMethod

2 IMPLICIT NONE

3 REAL :: a, b, tol , c, fa , fb , fc

4 INTEGER :: max_iter , iter

5

6 ! Input values

7 PRINT *, ’Enter the lower bound (a):’

8 READ *, a

9 PRINT *, ’Enter the upper bound (b):’

10 READ *, b

11 PRINT *, ’Enter the tolerance (tol):’

12 READ *, tol

13 PRINT *, ’Enter the maximum number of iterations:’

14 READ *, max_iter

15

16 ! Function values at a and b

17 fa = f(a)

18 fb = f(b)

19

20 ! Check if initial bounds are valid

21 IF (fa * fb > 0) THEN

22 PRINT *, ’Error: The function must have different signs at a

and b.’

23 STOP

24 END IF

25

26 ! Bisection loop

27 iter = 0

28 DO WHILE (ABS(b - a) > tol .AND. iter < max_iter)

29 c = (a + b) / 2.0

30 fc = f(c)

31

32 IF (ABS(fc) < tol) THEN

33 EXIT

34 ELSE IF (fa * fc < 0) THEN

35 b = c

36 fb = fc

37 ELSE

38 a = c

39 fa = fc

© 2025 Nitesh Kumar. All rights reserved. 86

Chapter 5. Finding Roots of an Equation

40 END IF

41

42 iter = iter + 1

43 END DO

44

45 ! Output results

46 IF (iter >= max_iter) THEN

47 PRINT *, ’Maximum iterations reached without convergence.’

48 ELSE

49 PRINT *, ’Root found at c = ’, c, ’ after ’, iter , ’

iterations.’

50 END IF

51

52 CONTAINS

53

54 ! Define the function f(x) = x^3 - x^2 - 1 (example function)

55 REAL FUNCTION f(x)

56 REAL , INTENT(IN) :: x

57 f = x**3 - x**2 - 1.0

58 END FUNCTION

59

60 END PROGRAM BisectionMethod

5.1.5 Practice Questions

1. Use the Bisection Method to find the root of f(x) = x2 − 4 on the interval [0, 3] to
three decimal places.

2. Apply the Bisection Method to find the root of f(x) = cos x− x on [0, 1].

© 2025 Nitesh Kumar. All rights reserved. 87

Chapter 5. Finding Roots of an Equation

5.2 Secant Method

The Secant method is a numerical technique used to find the root of a function f(x)
by using a secant line to approximate the function near the root. Unlike the Bisection
method, the two initial points for the Secant method do not need to lie on opposite sides
of the root, but they must be sufficiently close to it. However, choosing points on opposite
sides of the root often improves the stability of the method.

The Secant method uses two initial points, x1 and x2, and approximates the function
by a straight line passing through these two points. The root is then estimated as the
x-intercept of this secant line. The equation of the secant line passing through the points
(x1, f(x1)) and (x2, f(x2)) is given by:

y − f(x2) =
f(x2)− f(x1)

x2 − x1

(x− x2)

Setting y = 0 to find the x-intercept (the approximation of the root), we get:

0− f(x2) =
f(x2)− f(x1)

x2 − x1

(x3 − x2)

Solving for x3, the next approximation of the root is:

x3 = x2 − f(x2)
x2 − x1

f(x2)− f(x1)

This formula is iterated with the newly found point x3 replacing x1, and x2 replacing
x3 in subsequent steps. The process is repeated until the values of xn converge to a root
with the desired level of accuracy.

5.2.1 Method Explanation

Given two points x0 and x1 close to the root, the secant method approximates the root
using:

xn+1 = xn − f(xn) ·
xn − xn−1

f(xn)− f(xn−1)

4 4.2 4.4 4.6 4.8 5 5.2

−2.5

1

x0

x2

x1 x

f(x)

Figure 5.2: Secant method on f(x) = sin(x) - xcos(x).

© 2025 Nitesh Kumar. All rights reserved. 88

Chapter 5. Finding Roots of an Equation

5.2.2 Example: Solving f(x) = sinx− xcosx = 0 for x ∈ [4, 5]

Let’s apply the Secant Method to find the root of f(x) = sin x−x cosx with x in radians
and initial guesses x0 = 4.0 and x1 = 5.0. We will continue the iterations until the
function value is close to zero, recording the process in a table.

f(x) = sinx− x cosx

Detailed Iterations in Table

Table 5.2: Solving f(x) = sinx− x cosx using Secant method.
Iteration xn xn−1 f(xn) xn+1 = xn − f(xn)

xn−xn−1

f(xn)−f(xn−1)

0 4.0 - f(4.0) = sin(4.0)− 4.0 cos(4.0) ≈ −2.613 -
1 5.0 4.0 f(5.0) = sin(5.0)− 5.0 cos(5.0) ≈ 3.418 x2 = 4.0− (−2.613) 4.0−5.0

−2.613−3.418
≈ 4.433

2 4.433 5.0 f(4.433) ≈ −0.432 x3 = 4.433− (−0.432) 4.433−5.0
−0.432−3.418

≈ 4.490

3 4.490 4.433 f(4.490) ≈ −0.030 x4 = 4.490− (−0.030) 4.490−4.433
−0.030+0.432

≈ 4.494

4 4.494 4.490 f(4.494) ≈ 0.0005 x5 = 4.494− 0.0005 4.494−4.490
0.0005+0.030

≈ 4.4934

5 4.4934 4.494 f(4.4934) ≈ 0 Converged to root

Explanation of Iterations

In this table:
- Iteration 0: We start with initial guesses x0 = 4.0 and x1 = 5.0, calculating f(x0) ≈
−2.613 and f(x1) ≈ 3.418.
- Iteration 1: Using the Secant formula, we find x2 ≈ 4.433.
- Iteration 2 to 4: We continue the iterations, refining our approximations.
- Iteration 5: We reach x ≈ 4.4934, where f(x) ≈ 0, indicating the approximate root is
x ≈ 4.4934.

The Secant Method has successfully approximated the root of f(x) = sin x − x cosx
in the interval [4, 5] to be around x ≈ 4.4934. This iterative approach converges quickly
and avoids the need for derivatives, making it a practical alternative to other root-finding
methods.

5.2.3 Practice Questions

1. Find the root of f(x) = x2 − 2x + 1 using the Secant Method with initial guesses
x0 = 1.5 and x1 = 2.

2. Use the Secant Method to approximate the root of f(x) = sin x − 0.5 with initial
guesses x0 = 0.5 and x1 = 1.

5.3 Newton-Raphson Method

The Newton-Raphson method is an iterative numerical technique for approximating the
roots of a real-valued function f(x). The derivation is based on the Taylor series expansion
of f(x) around a given point.

© 2025 Nitesh Kumar. All rights reserved. 89

Chapter 5. Finding Roots of an Equation

5.3.1 Taylor Series Expansion using h

Let a be an initial approximation of the root of f(x), such that f(a) is close to zero.
Define a small correction term h such that the exact root is given by:

r = a+ h.

Expanding f(a+ h) in a Taylor series around a, we get:

f(a+ h) = f(a) + f ′(a)h+
f ′′(a)

2!
h2 +

f ′′′(a)

3!
h3 + . . .

Since r is a root of f(x), we have f(r) = f(a+h) = 0. Therefore, setting f(a+h) = 0,
we obtain:

0 = f(a) + f ′(a)h+
f ′′(a)

2!
h2 +

f ′′′(a)

3!
h3 + . . .

5.3.2 First-Order Approximation

If h is small, the higher-order terms h2, h3, . . . become negligible. Keeping only the first-
order terms, we approximate the equation as:

0 ≈ f(a) + f ′(a)h.

Solving for h:

h ≈ − f(a)

f ′(a)
.

Since h is the correction term to refine our approximation, the next approximation of
the root is:

x1 = a+ h = a− f(a)

f ′(a)
.

Generalizing this to an iterative formula, we define:

xn+1 = xn −
f(xn)

f ′(xn)
.

This is the Newton-Raphson iterative formula.

5.3.3 Convergence of the Method

The Newton-Raphson method exhibits quadratic convergence under suitable conditions.
If x0 is sufficiently close to the root r and f ′(r) ̸= 0, the error in each iteration approxi-
mately satisfies:

|xn+1 − r| ≈ C|xn − r|2,

where C is a constant. This rapid error reduction makes the Newton-Raphson method
highly efficient.

© 2025 Nitesh Kumar. All rights reserved. 90

Chapter 5. Finding Roots of an Equation

x

y

(xn, f(xn))

xn+1 xn

Figure 5.3: In the diagram, the blue curve represents f(x) = x2 − 2, the red dot at (2, 2)
is the current approximation (xn, f(xn)), and the red dashed tangent line (with equation
y = 4x− 6) crosses the x-axis at x = 1.5, which is the next approximation xn+1.

5.3.4 Geometric Interpretation

The method can be understood geometrically. The idea is to approximate f(x) by its
tangent at xn and use the x-intercept of this tangent as the next approximation xn+1.

For example, consider the function

f(x) = x2 − 2,

with xn = 2. Then:

f(2) = 2 and f ′(2) = 4.

The tangent line at (2, 2) is given by:

y − 2 = 4(x− 2) =⇒ y = 4x− 6.

Its x-intercept is found by setting y = 0:

4x− 6 = 0 =⇒ x = 1.5,

so xn+1 = 1.5.

5.3.5 A new function

Consider the function

f(x) = 9x− 6x2 + x3.

© 2025 Nitesh Kumar. All rights reserved. 91

Chapter 5. Finding Roots of an Equation

Let the initial approximation be x0 = 1.3. Then, we compute

f(1.3) = 9(1.3)− 6(1.3)2 + (1.3)3 ≈ 11.7− 10.14 + 2.197 ≈ 3.76,

and the derivative is

f ′(x) = 9− 12x+ 3x2, f ′(1.3) ≈ 9− 15.6 + 5.07 ≈ −1.53.

The tangent line at the point (1.3, 3.76) is given by

y − 3.76 = −1.53(x− 1.3).

Setting y = 0 to find its x-intercept:

−3.76 = −1.53(x− 1.3) =⇒ x− 1.3 ≈ 3.76

1.53
≈ 2.46,

so that the next approximation is

x1 ≈ 1.3 + 2.46 ≈ 3.76.

Now, starting with x1 ≈ 3.76, we compute

f(3.76) = 9(3.76)− 6(3.76)2 + (3.76)3 ≈ 33.84− 84.83 + 53.19 ≈ 2.20,

and
f ′(3.76) = 9− 12(3.76) + 3(3.76)2 ≈ 9− 45.12 + 42.41 ≈ 6.29.

The tangent line at (3.76, 2.20) is

y − 2.20 = 6.29(x− 3.76).

Setting y = 0 gives

−2.20 = 6.29(x− 3.76) =⇒ x− 3.76 ≈ −2.20

6.29
≈ −0.35,

so that
x2 ≈ 3.76− 0.35 ≈ 3.41.

5.3.6 Detailed Iterations in Table

We solve
f(x) = 9x− 6x2 + x3,

using the Newton–Raphson method with the iteration formula

xn+1 = xn −
f(xn)

f ′(xn)
.

For this function, note that it can be factored as

f(x) = x(x− 3)2,

and its derivative is
f ′(x) = 9− 12x+ 3x2.

Starting with an initial approximation x0 = 1.3, the following table summarizes the
iterations:

The table shows the convergence of the method as the approximations approach the
repeated root at x = 3.

© 2025 Nitesh Kumar. All rights reserved. 92

Chapter 5. Finding Roots of an Equation

x

y

(x0, f(x0))

x1

(x1, f(x1))

x2

Figure 5.4: The figure illustrates the first two iterations of the Newton-Raphson method
on f(x) = 9x−6x2+x3. A grid is added to the x and y axes. The red elements correspond
to the first iteration starting at x0 = 1.3, and the green elements correspond to the second
iteration starting at x1 ≈ 3.76.

Table 5.3: Solving f(x) = 9x− 6x2 + x3 using the Newton–Raphson Method.

Iteration xn f(xn) f ′(xn) xn+1 = xn −
f(xn)

f ′(xn)
0 1.3000 3.757 -1.530 3.7560
1 3.7560 2.146 6.300 3.4130
2 3.4130 0.581 2.994 3.2190
3 3.2190 0.154 1.473 3.1130
4 3.1130 0.040 0.717 3.0580
5 3.0580 0.0101 0.3576 3.0290
6 3.0290 0.00257 0.1800 3.0150
7 3.0150 0.000642 0.0890 3.0090

5.3.7 Practice Questions

1. Use the Newton-Raphson method to find the root of f(x) = x2 − 4x + 3 starting
with x0 = 2.5.

2. Find the root of f(x) = tan(x)− x using an initial guess of x0 = 4.

5.3.8 Detailed Iterations in Table

We solve

f(x) = tan(x)− x,

© 2025 Nitesh Kumar. All rights reserved. 93

Chapter 5. Finding Roots of an Equation

using the Newton–Raphson method with the iteration formula

xn+1 = xn −
f(xn)

f ′(xn)
.

The derivative of the function is

f ′(x) = sec2(x)− 1.

Starting with an initial approximation x0 = 4, the following table summarizes the itera-
tions:

© 2025 Nitesh Kumar. All rights reserved. 94

Chapter 6

Function Approximation

6.1 Introduction

Function approximation is a fundamental concept in numerical analysis, where the goal is
to represent given paired data with simpler functions (often polynomials) that are easier
to work with. One important application of function approximation is interpolation, in
which a function is approximated by a polynomial that exactly matches the function’s
values at a set of specified nodes. In this chapter, we explore the Lagrange interpolation
formula, a classical method to construct such an interpolating polynomial.

6.2 Lagrange Interpolation Formula

6.2.1 Definition and Notation

Suppose we are given a set of n+ 1 distinct points

(x0, y0), (x1, y1), . . . , (xn, yn)

where the xi are mutually distinct. The Lagrange interpolation formula provides the
unique polynomial P (x) of degree at most n that satisfies

P (xi) = yi, i = 0, 1, . . . , n.

It is expressed as:

P (x) =
n∑

i=0

yi Li(x),

where each Li(x) is the Lagrange basis polynomial defined by

Li(x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

.

Notice that by construction,

Li(xk) = δik =

{
1, if i = k,

0, if i ̸= k,

which ensures that P (xi) = yi for each node.

95

Chapter 6. Function Approximation

6.2.2 Properties of the Lagrange Basis Polynomials

The Lagrange basis polynomials have several noteworthy properties:

• Partition of Unity: For any x, the sum of the basis polynomials equals one:

n∑
i=0

Li(x) = 1.

This follows because the constant function f(x) = 1 is exactly interpolated by these
polynomials.

• Degree: Each Li(x) is a polynomial of degree n, and therefore P (x) is a polynomial
of degree at most n.

• Independence from yi: The basis polynomials depend only on the x-values
(nodes). Once these are computed, they can be reused to interpolate different
sets of y-values.

6.2.3 Worked Example

Problem Statement

Find the interpolating polynomial that passes through the points (1, 1), (2, 4), and (3, 9),
and evaluate the polynomial at x = 2.5.

Step 1: Write the Interpolating Polynomial

For three points, the Lagrange interpolation formula gives:

P (x) = y0L0(x) + y1L1(x) + y2L2(x).

Here, y0 = 1, y1 = 4, and y2 = 9.

Step 2: Compute the Basis Polynomials

The basis polynomials are computed as follows:

L0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 2)(x− 3)

(1− 2)(1− 3)
=

(x− 2)(x− 3)

(−1)(−2)
=

(x− 2)(x− 3)

2
,

L1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
=

(x− 1)(x− 3)

(2− 1)(2− 3)
=

(x− 1)(x− 3)

(1)(−1)
= − (x− 1)(x− 3),

L2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x− 1)(x− 2)

(3− 1)(3− 2)
=

(x− 1)(x− 2)

2 · 1
=

(x− 1)(x− 2)

2
.

Step 3: Form the Interpolating Polynomial

Substitute the y-values into the polynomial:

P (x) = 1 · (x− 2)(x− 3)

2
− 4 (x− 1)(x− 3) + 9 · (x− 1)(x− 2)

2
.

© 2025 Nitesh Kumar. All rights reserved. 96

Chapter 6. Function Approximation

Step 4: Evaluate at x = 2.5

Now, compute each basis polynomial at x = 2.5:

L0(2.5) =
(2.5− 2)(2.5− 3)

2
=

(0.5)(−0.5)

2
= −0.125,

L1(2.5) = − (2.5− 1)(2.5− 3) = − (1.5)(−0.5) = 0.75,

L2(2.5) =
(2.5− 1)(2.5− 2)

2
=

(1.5)(0.5)

2
= 0.375.

Thus,

P (2.5) = 1 · (−0.125) + 4 · 0.75 + 9 · 0.375 = −0.125 + 3 + 3.375 = 6.25.

Interpretation

In this example, the given data points happen to lie on the function f(x) = x2, which is
why the interpolation polynomial simplifies exactly to P (x) = x2. Evaluating at x = 2.5
yields 2.52 = 6.25, consistent with our calculation.

6.3 Error Analysis and Convergence

While the Lagrange interpolation polynomial exactly matches the function at the nodes,
the quality of the approximation between nodes depends on several factors. The error in
polynomial interpolation can be expressed using the Lagrange remainder:

f(x)− P (x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi),

where ξ is some number in the interval containing the nodes. This error bound reveals:

• The magnitude of the error depends on the (n + 1)-th derivative of the function,
which reflects the function’s smoothness.

• The product
∏n

i=0(x− xi) shows that the error is zero at the nodes, but can grow
between them.

A notable issue when using equispaced nodes is Runge’s phenomenon, where the
interpolation error can increase dramatically at the interval’s ends. To mitigate this, one
may use Chebyshev nodes, which minimize the maximum error by clustering more
nodes near the endpoints.

6.4 Newton’s Divided Difference Formula

Newton’s divided difference formula provides an efficientincremental method to construct
the unique interpolation polynomial for a given set of data points. Unlike the Lagrange
form, which builds the polynomial as a weighted sum of basis polynomials, the Newton
form expresses the polynomial as an expanding series that can be easily updated when
additional data becomes available.

© 2025 Nitesh Kumar. All rights reserved. 97

Chapter 6. Function Approximation

The general form of the Newton interpolation polynomial is:

P (x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) + · · ·

+f [x0, x1, . . . , xn](x− x0)(x− x1) · · · (x− xn−1),

where the notation f [x0, x1, . . . , xk] represents the divided difference of order k. These
divided differences are computed recursively by the formula:

f [xi, xi+1, . . . , xi+k] =
f [xi+1, . . . , xi+k]− f [xi, . . . , xi+k−1]

xi+k − xi

.

The zeroth divided differences are simply the function values:

f [xi] = f(xi).

Advantages of the Newton Form

• Incremental Construction: New data points can be added without recomputing
the entire polynomial.

• Efficiency: The recursive structure of divided differences leads to a straightforward
computation that often requires fewer arithmetic operations than the Lagrange
form.

• Numerical Stability: When implemented carefully (especially using the nested
multiplication form), the Newton form can offer better numerical stability.

Example: Constructing the Newton Interpolating Polynomial

Consider the following set of data points:

x f(x)
1 3
2 6
4 5
5 4

We will construct the Newton interpolation polynomial P (x) using these points.

Step 1: Compute Divided Differences Zeroth Divided Differences:

f [x0] = f(1) = 3, f [x1] = f(2) = 6, f [x2] = f(4) = 5, f [x3] = f(5) = 4.

First Divided Differences:

f [x0, x1] =
f(2)− f(1)

2− 1
=

6− 3

1
= 3,

f [x1, x2] =
f(4)− f(2)

4− 2
=

5− 6

2
= −0.5,

f [x2, x3] =
f(5)− f(4)

5− 4
=

4− 5

1
= −1.

© 2025 Nitesh Kumar. All rights reserved. 98

Chapter 6. Function Approximation

Second Divided Differences:

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

4− 1
=

−0.5− 3

3
=

−3.5

3
≈ −1.1667,

f [x1, x2, x3] =
f [x2, x3]− f [x1, x2]

5− 2
=

−1− (−0.5)

3
=

−0.5

3
≈ −0.1667.

Third Divided Difference:

f [x0, x1, x2, x3] =
f [x1, x2, x3]− f [x0, x1, x2]

5− 1
=

−0.1667− (−1.1667)

4
=

1

4
= 0.25.

The divided difference table can be summarized as follows:

x f [x] f [x0, x1] f [x0, x1, x2] f [x0, x1, x2, x3]
1 3 3 −1.1667 0.25
2 6 −0.5 −0.1667
4 5 −1
5 4

Step 2: Write the Newton Interpolating Polynomial Using the divided differ-
ences, the Newton form of the interpolation polynomial is:

P (x) = f [x0]+f [x0, x1](x−x0)+f [x0, x1, x2](x−x0)(x−x1)+f [x0, x1, x2, x3](x−x0)(x−x1)(x−x2).

Substitute the computed values:

P (x) = 3 + 3(x− 1)− 1.1667 (x− 1)(x− 2) + 0.25 (x− 1)(x− 2)(x− 4).

This polynomial P (x) is the unique polynomial of degree at most 3 that passes through
the four given points.

Step 3: Using the Polynomial The Newton form is especially useful if we wish to
evaluate P (x) at a particular x or if more points are to be added later. The nested mul-
tiplication (Horner’s method) can be applied to the Newton form for efficient evaluation.

Summary Table of Divided Differences:

x f(x) f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, xi+1, xi+2, xi+3]
1 3 3 −1.1667 0.25
2 6 −0.5 −0.1667
4 5 −1
5 4

Conclusion: The Newton divided difference method not only constructs the inter-
polating polynomial in an incremental manner but also organizes the computation into
a table that makes the process transparent. Each level of divided differences provides
additional terms for the polynomial, and the final polynomial is expressed in a nested
form that is both computationally efficient and easy to update.

This approach is particularly advantageous when interpolating data that may be ex-
tended or modified, allowing us to add new points with minimal extra work.

© 2025 Nitesh Kumar. All rights reserved. 99

Chapter 6. Function Approximation

© 2025 Nitesh Kumar. All rights reserved. 100

Chapter 7

Numerical Integration

In many practical scenarios, the analytical evaluation of definite integrals is either very
difficult or impossible. Numerical integration offers a suite of techniques to approximate
definite integrals. These methods are particularly valuable in physics and engineering,
where integrals often arise in applications such as area estimation, work, energy, or prob-
ability.

We aim to approximate ∫ b

a

f(x) dx

by replacing the integrand f(x) with a simpler function (linear, quadratic, cubic, etc.)
that closely matches f(x) on small subintervals.

7.1 Trapezoidal Rule

7.1.1 Derivation

Divide the interval [a, b] into n equal subintervals of width h = b−a
n
. Over each subinterval

[xi, xi+1], we approximate f(x) using a straight line:

f(x) ≈ f(xi) +
f(xi+1)− f(xi)

h
(x− xi)

The area under this line is the area of a trapezoid:∫ xi+1

xi

f(x) dx ≈ h

2
[f(xi) + f(xi+1)]

Adding all trapezoids:∫ b

a

f(x) dx ≈ h

2

[
f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)

]

7.1.2 Error Term

The error in the trapezoidal rule is proportional to the second derivative:

ET = −(b− a)3

12n2
f ′′(ξ), ξ ∈ (a, b)

101

Chapter 7. Numerical Integration

7.2 Simpson’s 1/3 Rule

7.2.1 3.1 Derivation

Simpson’s 1/3 Rule fits a second-degree polynomial (a parabola) through every three
consecutive points. This requires an even number of subintervals (n must be even). For
subintervals of width h:∫ xi+2

xi

f(x) dx ≈ h

3
[f(xi) + 4f(xi+1) + f(xi+2)]

Summing over all such pairs:∫ b

a

f(x) dx ≈ h

3

[
f(x0) + 4

n−1∑
odd i

f(xi) + 2
n−2∑
even i

f(xi) + f(xn)

]

7.2.2 Error Term

The error in Simpson’s 1/3 Rule depends on the fourth derivative:

ES = −(b− a)5

180n4
f (4)(ξ), ξ ∈ (a, b)

7.3 Simpson’s 3/8 Rule

7.3.1 Derivation

Simpson’s 3/8 Rule uses a cubic polynomial to approximate f(x) over three subintervals
(four points). So n must be a multiple of 3.

For h = b−a
n
:∫ xi+3

xi

f(x) dx ≈ 3h

8
[f(xi) + 3f(xi+1) + 3f(xi+2) + f(xi+3)]

Applying this over all such groups:

∫ b

a

f(x) dx ≈ 3h

8

f(x0) + 3
n−1∑
i=1

i mod 3̸=0

f(xi) + 2
n−3∑
i=3

i mod 3=0

f(xi) + f(xn)

7.3.2 Error Term

E3/8 = −3h5

80
f (4)(ξ), ξ ∈ (a, b)

7.4 Example: Approximate
∫ 1

0 x2 dx

Let us compute the integral using n = 4 subintervals for Trapezoidal and Simpson’s 1/3,
and n = 3 for Simpson’s 3/8 Rule.

© 2025 Nitesh Kumar. All rights reserved. 102

Chapter 7. Numerical Integration

7.4.1 Exact Value ∫ 1

0

x2 dx =

[
x3

3

]1
0

=
1

3
≈ 0.3333

7.4.2 Trapezoidal Rule (n = 4)

h =
1− 0

4
= 0.25

f(x0) = 02 = 0, f(x1) = 0.0625, f(x2) = 0.25, f(x3) = 0.5625, f(x4) = 1∫ 1

0

x2dx ≈ 0.25

2
[0 + 2(0.0625 + 0.25 + 0.5625) + 1] = 0.125 · 2.75 = 0.34375

7.4.3 Simpson’s 1/3 Rule (n = 4)∫ 1

0

x2dx ≈ 0.25

3
[0 + 4(0.0625 + 0.5625) + 2(0.25) + 1] =

1

12
· 4 = 0.3333

7.4.4 Simpson’s 3/8 Rule (n = 3)

h =
1− 0

3
= 0.3333, x0 = 0, x1 =

1

3
, x2 =

2

3
, x3 = 1

f(x0) = 0, f(x1) =

(
1

3

)2

=
1

9
, f(x2) =

4

9
, f(x3) = 1

∫ 1

0

x2dx ≈ 3 · 0.3333
8

[
0 + 3

(
1

9
+

4

9

)
+ 1

]
= 0.125 ·

(
3 · 5

9
+ 1

)
= 0.125 ·

(
15

9
+ 1

)

= 0.125 ·
(
24

9

)
= 0.125 · 2.6 = 0.3333

7.5 Conclusion

• The Trapezoidal Rule is simple but less accurate for nonlinear functions.

• Simpson’s 1/3 Rule improves accuracy by using parabolas and is ideal when n is
even.

• Simpson’s 3/8 Rule uses cubic interpolation and is particularly useful when n is a
multiple of 3.

• All methods give close results for smooth functions, with Simpson’s rules typically
offering higher accuracy.

© 2025 Nitesh Kumar. All rights reserved. 103

Chapter 7. Numerical Integration

7.6 C++ code

1 #include <iostream >

2 #include <cmath >

3 #include <iomanip >

4

5 using namespace std;

6

7 // Function to integrate

8 double f(double x) {

9 return x * x; // Change this function as needed

10 }

11

12 // Trapezoidal Rule

13 double trapezoidal(double a, double b, int n) {

14 double h = (b - a) / n;

15 double sum = f(a) + f(b);

16 for (int i = 1; i < n; ++i) {

17 sum += 2 * f(a + i * h);

18 }

19 return (h / 2) * sum;

20 }

21

22 // Simpson ’s 1/3 Rule (n must be even)

23 double simpsonsOneThird(double a, double b, int n) {

24 if (n % 2 != 0) {

25 cerr << "Simpson ’s 1/3 Rule requires even number of

intervals .\n";

26 return NAN;

27 }

28 double h = (b - a) / n;

29 double sum = f(a) + f(b);

30 for (int i = 1; i < n; ++i) {

31 sum += (i % 2 == 0 ? 2 : 4) * f(a + i * h);

32 }

33 return (h / 3) * sum;

34 }

35

36 // Simpson ’s 3/8 Rule (n must be a multiple of 3)

37 double simpsonsThreeEighth(double a, double b, int n) {

38 if (n % 3 != 0) {

39 cerr << "Simpson ’s 3/8 Rule requires number of intervals

to be a multiple of 3.\n";

40 return NAN;

41 }

42 double h = (b - a) / n;

43 double sum = f(a) + f(b);

44 for (int i = 1; i < n; ++i) {

45 sum += ((i % 3 == 0) ? 2 : 3) * f(a + i * h);

46 }

47 return (3 * h / 8) * sum;

© 2025 Nitesh Kumar. All rights reserved. 104

Chapter 7. Numerical Integration

48 }

49

50 int main() {

51 double a = 0.0, b = 1.0;

52 int n_trap = 4;

53 int n_simp13 = 4;

54 int n_simp38 = 3;

55

56 cout << fixed << setprecision (6);

57

58 cout << "Integral of f(x) = x^2 from 0 to 1:\n";

59 cout << "--------------------------------------\n";

60 cout << "Exact Value : " << 1.0 / 3.0 << "\n";

61 cout << "Trapezoidal Rule : " << trapezoidal(a, b, n_trap

) << "\n";

62 cout << "Simpson ’s 1/3 Rule : " << simpsonsOneThird(a, b,

n_simp13) << "\n";

63 cout << "Simpson ’s 3/8 Rule : " << simpsonsThreeEighth(a, b

, n_simp38) << "\n";

64

65 return 0;

66 }

© 2025 Nitesh Kumar. All rights reserved. 105

Chapter 7. Numerical Integration

© 2025 Nitesh Kumar. All rights reserved. 106

Chapter 8

ODE

1

2 #include <iostream >

3

4 using namespace std;

5

6 // Define dy/dx = x + y

7 double f(double x, double y) {

8 return x + y;

9 }

10

11 // Define dz/dx = z - x

12 double g(double x, double z) {

13 return z - x;

14 }

15

16 int main() {

17 // Initial conditions

18 double x = 0.0;

19 double y = 1.0;

20 double z = 0.0;

21 double h = 0.1;

22 double x_end = 0.2;

23

24 // Number of steps

25 int N = (x_end - x) / h;

26

27 // Print header

28 cout << fixed << setprecision (4);

29 cout << "x\t\ty\t\tz\n";

30 cout << x << "\t\t" << y << "\t\t" << z << endl;

31

32 // Euler ’s method loop

33 for (int i = 0; i < N; ++i) {

34 double f_val = f(x, y);

35 double g_val = g(x, z);

36

37 y = y + h * f_val;

107

Chapter 8. ODE

38 z = z + h * g_val;

39 x = x + h;

40

41 cout << x << "\t\t" << y << "\t\t" << z << endl;

42 }

43

44 return 0;

45 }

© 2025 Nitesh Kumar. All rights reserved. 108

	Introduction to FORTRAN 90 on Linux
	Getting Started with Linux
	Basic Linux Commands
	File System Hierarchy

	Text Processing with grep, sed, and awk
	grep: Global Regular Expression Print
	sed: Stream Editor
	awk: Pattern Scanning and Processing Language
	Combining grep, sed, and awk

	Historical Development of FORTRAN
	Evolution of FORTRAN

	Setting Up the FORTRAN Environment on Linux
	Installing GNU Fortran Compiler (gfortran)

	Introduction to Fortran
	Basic Syntax
	Variables and Data Types
	Control Structures
	Arrays
	Subroutines and Functions
	File Handling

	Advanced Topics
	Example Programs
	Basic syntax
	Variables and data types
	Control structures
	Arrays
	Functions
	Subroutines
	File handling

	Linking external libraries
	Steps to Link to External Libraries
	Example: Solving a Linear System using LAPACK
	Fortran Code
	Compilation and Linking
	Running the Program

	Matrix Multiplication of size 2x2
	Flowchart
	Code

	Conclusion

	Introduction to C++
	Basic Syntax
	Variables and Data Types
	Control Structures
	Functions
	Arrays and Vectors
	Object-Oriented Programming (OOP)
	File Handling
	Advanced Topics
	Example Programs
	Basic syntax
	Variables and data types
	Control structures
	Arrays and vectors
	Functions
	File handling

	Pointers in C++
	Examples

	Arrays in C++
	Examples

	Pointers and Arrays
	Examples

	Dynamic list Example
	Explanation

	Significance of Using Pointers

	Introduction to Gnuplot
	Overview
	Getting Started with Gnuplot
	Plotting Mathematical Functions
	Plotting Data from Files
	Customizing Plots
	Advanced Plotting Techniques
	Data Analysis using Gnuplot
	Installation
	Basic Usage
	Example 1: Plotting Data from a File
	Example 2: Fitting a Curve to Data
	Example 3: 3D Data Visualization
	Example 4: Histogram Plotting
	Example 5: Statistical Analysis
	Example 6: Data Transformation and Scripting
	Example 7: Multiplot Layouts
	Example 8: Heatmaps
	Example 9: Error Bars
	Example 10: Exporting Plots

	Statistical Data Analysis with GNUPLOT
	Basic Statistical Analysis
	Example Data File
	Computing Minimum, Maximum, and Mean

	Regression Analysis
	Simple Regression
	Multivariate Regression

	Data Smoothing
	Smoothing Methods
	Example: Cubic Spline Smoothing
	Example: Bezier Smoothing

	Conclusion

	Introduction to LaTeX
	Introduction to LaTeX
	Getting Started with LaTeX
	Installing LaTeX
	First LaTeX Document

	The Preamble and Body of a LaTeX Document
	The Preamble
	The Body

	Document Structure
	Basic Structure
	Lists

	Mathematical Typesetting
	Inline Math
	Displayed Equations
	Complex Equations

	Figures and Tables
	Inserting Figures
	Tables

	Cross-referencing and Bibliography
	Cross-referencing
	Bibliography

	Customizing LaTeX Documents
	Page Layout
	Font and Style
	Color and Highlighting

	Error Handling and Debugging
	Common LaTeX Errors
	Debugging Tips
	Warnings
	Tools for Error-Free LaTeX

	Title Page and Its Customization in LaTeX
	Basic Title Page
	Customizing the Title Page
	Example of a Customized Title Page

	Finding Roots of an Equation
	Bisection Method
	Method Explanation
	Example: Finding the Root of f(x) = sinx - x cosx
	Error Estimation in the Bisection Method
	Disadvantages of the Bisection Method
	Practice Questions

	Secant Method
	Method Explanation
	Example: Solving f(x) = x - xcosx = 0 for x [4, 5]
	Practice Questions

	Newton-Raphson Method
	Taylor Series Expansion using h
	First-Order Approximation
	Convergence of the Method
	Geometric Interpretation
	A new function
	Detailed Iterations in Table
	Practice Questions
	Detailed Iterations in Table

	Function Approximation
	Introduction
	Lagrange Interpolation Formula
	Definition and Notation
	Properties of the Lagrange Basis Polynomials
	Worked Example

	Error Analysis and Convergence
	Newton’s Divided Difference Formula

	Numerical Integration
	Trapezoidal Rule
	Derivation
	Error Term

	Simpson's 1/3 Rule
	3.1 Derivation
	Error Term

	Simpson's 3/8 Rule
	Derivation
	Error Term

	Example: Approximate 01 x2dx
	Exact Value
	Trapezoidal Rule (n = 4)
	Simpson's 1/3 Rule (n = 4)
	Simpson’s 3/8 Rule (n = 3)

	Conclusion
	C++ code

	ODE

