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Chapter 1

Introduction to FORTRAN 90 on
Linux

1.1 Getting Started with Linux

Before diving into FORTRAN 90, it’s essential to understand some basic Linux com-
mands and environment setup to efficiently work with programming on Linux. Linux is a
powerful and flexible operating system that is widely used for programming and scientific
computing.

1.1.1 Basic Linux Commands

Here are some basic Linux commands you’ll use frequently while working with FORTRAN
and other programming languages:

• pwd: Print the current working directory.

1 $ pwd
2 /home/ user
3

• ls: List files and directories.

1 $ l s
2 Documents Downloads h e l l o . f90 P i c tu r e s
3

• cd: Change directory.

1 $ cd Documents
2

• mkdir: Create a new directory.

1 $ mkdir f o r t r a n p r o j e c t s
2

• rm: Remove files or directories.

1 $ rm h e l l o . f90
2
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Chapter 1. Introduction to FORTRAN 90 on Linux

• nano or vim: Command-line text editors. We’ll use nano for simplicity.

1 $ nano h e l l o . f 90
2

• gfortran: The GNU Fortran compiler, used for compiling FORTRAN code.

1.1.2 File System Hierarchy

Linux organizes files and directories into a hierarchical structure, starting with the root
directory (/). Some common directories you’ll work with include:

• /home: Contains user home directories.

• /usr: Contains installed software and libraries.

• /etc: Configuration files.

Understanding this structure will help you navigate and manage files while working
on your projects.

1.2 Historical Development of FORTRAN

FORTRAN (FORmula TRANslation) is one of the oldest high-level programming lan-
guages. Originally developed in the 1950s by IBM, it has evolved significantly over the
decades, with FORTRAN 90 being a major revision.

1.2.1 Evolution of FORTRAN

• FORTRAN I (1957): The first compiled high-level language, primarily designed
for scientific and engineering computations.

• FORTRAN IV and 66 (1960s): Introduced subroutines, functions, and better
control structures.

• FORTRAN 77: Improved string handling and more complex control structures.

• FORTRAN 90 (1991): Introduced modern programming concepts like recursion,
modules, dynamic memory allocation, and array programming.

FORTRAN 90 represents a significant step forward from FORTRAN 77, incorporating
many new features designed to improve the flexibility and readability of code.

1.3 Setting Up the FORTRAN Environment on Linux

Before writing any code, you need to install the GNU Fortran compiler. Most Linux
distributions provide the gfortran package.

© 2024 Nitesh Kumar. All rights reserved. 6
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1.3.1 Installing GNU Fortran Compiler (gfortran)

To install gfortran on a Debian-based system (like Ubuntu), run:

1 $ sudo apt−get update
2 $ sudo apt−get i n s t a l l g f o r t r an

For Red Hat-based systems, use:

1 $ sudo yum i n s t a l l g f o r t r an

After installation, you can check if the compiler is installed correctly:

1 $ g f o r t r an −−ve r s i on

1.4 Introduction to Fortran

Fortran (short for Formula Translation) is a general-purpose, imperative programming
language that is particularly suited for scientific and engineering applications. It was
developed in the 1950s and has since evolved into several versions, with Fortran 90 and
Fortran 95 being the most widely used.

1.4.1 Basic Syntax

Fortran programs are composed of statements, which are written in a fixed-format style.
Each statement begins in column 1 and can extend up to column 72. Statements are
typically written in uppercase, although lowercase is also allowed.

1.4.2 Variables and Data Types

Fortran supports several data types, including integers, real numbers, complex numbers,
and character strings. Variables are declared using the INTEGER, REAL, COMPLEX, or
CHARACTER keywords, followed by the variable name.

1.4.3 Control Structures

Fortran provides various control structures for program flow, including IF-THEN-ELSE

statements, DO loops, and SELECT CASE statements. These structures allow for condi-
tional execution and repetitive tasks.

1.4.4 Arrays

Arrays are an essential part of Fortran programming. They allow you to store and
manipulate multiple values of the same data type. Fortran supports both one-dimensional
and multi-dimensional arrays.

1.4.5 Subroutines and Functions

Subroutines and functions are used to modularize code and improve code reusability.
Subroutines are blocks of code that perform a specific task, while functions return a
value.

© 2024 Nitesh Kumar. All rights reserved. 7
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1.4.6 File Handling

Fortran provides built-in functions and subroutines for reading from and writing to files.
This allows you to interact with external data files and perform input/output operations.

1.5 Advanced Topics

Fortran also offers advanced features such as modules, derived types, and object-oriented
programming. These features enhance code organization and allow for more complex
programming structures.

1.6 Example Programs

1.6.1 Basic syntax

1 PROGRAM he l l o
2 PRINT ∗ , ’ Hel lo , World ! ’
3 END PROGRAM he l l o

To compile the program, use the following commands:

1 $ g f o r t r an h e l l o . f 90 −o h e l l o

To run the compiled program, use:

1 $ . / h e l l o

Output:

1 Hel lo , World !

1.6.2 Variables and data types

1 PROGRAM va r i a b l e s
2 INTEGER : : i
3 REAL : : x
4 COMPLEX : : z
5 CHARACTER(LEN=10) : : name
6 LOGICAL : :
7

8 i = 10
9 x = 3.14

10 z = ( 1 . 0 , 2 . 0 )
11 name = ’ Fortran ’
12

13 PRINT ∗ , ’ I n t eg e r : ’ , i
14 PRINT ∗ , ’ Real : ’ , x
15 PRINT ∗ , ’Complex : ’ , z
16 PRINT ∗ , ’ Character : ’ , name
17 END PROGRAM va r i a b l e s

To compile the program, use the following commands:

1 $ g f o r t r an v a r i a b l e s . f 90 −o v a r i a b l e s

To run the compiled program, use:

© 2024 Nitesh Kumar. All rights reserved. 8
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1 $ . / v a r i a b l e s

Output:

1 I n t eg e r : 10
2 Real : 3 .14000000
3 Complex : (1 .00000000 ,2 .00000000)
4 Character : Fortran

1.6.3 Control structures

1 PROGRAM con t r o l
2 INTEGER : : i
3 i = 5
4

5 IF ( i > 0) THEN
6 PRINT ∗ , ’ Po s i t i v e ’
7 ELSE
8 PRINT ∗ , ’ Negative ’
9 END IF

10

11 DO i = 1 , 5
12 PRINT ∗ , i
13 END DO
14

15 SELECT CASE ( i )
16 CASE (1)
17 PRINT ∗ , ’One ’
18 CASE (2)
19 PRINT ∗ , ’Two ’
20 CASE DEFAULT
21 PRINT ∗ , ’ Other ’
22 END SELECT
23 END PROGRAM con t r o l

To compile the program, use the following commands:

1 $ g f o r t r an con t r o l . f 90 −o con t r o l

To run the compiled program, use:

1 $ . / c on t r o l

Output:

1 Pos i t i v e
2 1
3 2
4 3
5 4
6 5
7 Other

1.6.4 Arrays

1 PROGRAM arrays
2 INTEGER, DIMENSION(3) : : a
3 REAL, DIMENSION(2 , 2) : : b

© 2024 Nitesh Kumar. All rights reserved. 9
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4

5 a = [ 1 , 2 , 3 ]
6 b = RESHAPE( [ 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 ] , [ 2 , 2 ] )
7

8 PRINT ∗ , ’ Array a : ’ , a
9 PRINT ∗ , ’ Array b : ’

10 DO i = 1 , 2
11 PRINT ∗ , b ( i , : )
12 END DO
13 END PROGRAM arrays

To compile the program, use the following commands:

1 $ g f o r t r an ar rays . f90 −o ar rays

To run the compiled program, use:

1 $ . / a r rays

Output:

1 Array a : 1 2 3
2 Array b :
3 1.00000000 2.00000000
4 3.00000000 4.00000000

1.6.5 Functions

The syntax of the function is given below.

1 type FUNCTION func−name( arg1 , arg2 , . . . . )
2 IMPLICIT NONE
3 [ s p e c i f i c a t i o n part ]
4 [ execut ion part ]
5 [ subprogram part ]
6 END FUNCTION func−name

where ‘type’ is the data types like ‘INTEGER’, ‘REAL’, ... etc.
A sample code to add two numbers using Fortran function is given below:

1 program adding
2 IMPLICIT NONE
3 INTEGER : : a , b , addi t ion , add
4 a = 4
5 b = 6
6 add i t i on = add (a , b)
7 pr in t ∗ , a , b , add i t i on
8 END PROGRAM adding
9

10 INTEGER FUNCTION add (x , y )
11 IMPLICIT NONE
12 INTEGER, INTENT(IN) : : x , y
13 add = (x+y)
14 END FUNCTION add

Another way of writing functions in Fortran:

1 program TwoFunctions
2 IMPLICIT NONE
3 REAL : : a , b , A mean , G mean
4 READ(∗ ,∗ ) a , b

© 2024 Nitesh Kumar. All rights reserved. 10
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5 A mean = ArithMean (a , b)
6 G mean = GeoMean(a , b)
7 WRITE(∗ ,∗ ) a , b , A mean , G Mean
8 CONTAINS
9 REAL FUNCTION ArithMean (a , b)

10 IMPLICIT NONE
11 REAL, INTENT(IN) : : a , b
12 ArithMean = ( a+b) /2 .0
13 END FUNCTION ArithMean
14

15 REAL FUNCTION GeoMean(a , b)
16 IMPLICIT NONE
17 REAL, INTENT(IN) : : a , b
18 GeoMean = SQRT(a∗b)
19 END FUNCTION GeoMean
20 END PROGRAM TwoFunctions

1.6.6 Subroutines

1 PROGRAM main
2 IMPLICIT NONE
3 INTEGER : : x , y , z
4 x = 5
5 y = 2
6 CALL ADD(x , y , z )
7 pr in t ∗ , ’ADDITION IS ’ , z
8 END PROGRAM main
9

10 SUBROUTINE ADD(a , b , c )
11 IMPLICIT NONE
12 INTEGER, INTENT(IN) : : a , b
13 INTEGER, INTENT(OUT) : : c
14 c = a + b
15 END SUBROUTINE ADD

To compile the program, use the following commands:

1 $ g f o r t r an main . f90 −o main

To run the compiled program, use:

1 $ . / main

Output:

1 Sum: 15

1.6.7 File handling

This code demonstrates how to write data to a file in Fortran. It opens a file, writes
multiple lines to it, and then closes the file.

1 PROGRAM w r i t e t o f i l e
2 INTEGER : : unit number
3 INTEGER : : i
4 CHARACTER( l en=20) : : f i l ename
5

6 ! Set the f i l e name and the un i t number

© 2024 Nitesh Kumar. All rights reserved. 11
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7 f i l ename = ’ output . txt ’
8 unit number = 10
9

10 ! Open the f i l e f o r wr i t i ng
11 OPEN( uni t=unit number , f i l e=f i l ename , s t a tu s=’unknown ’ )
12

13 ! Write some data in to the f i l e
14 DO i = 1 , 5
15 WRITE( unit number , ∗) ’ Line number : ’ , i
16 END DO
17

18 ! Close the f i l e
19 CLOSE( unit number )
20

21 PRINT ∗ , ’ Data has been wr i t t en to ’ , f i l ename
22 END PROGRAM w r i t e t o f i l e

Explanation

• PROGRAM write to file: The program starts with a main program block named
write to file.

• INTEGER :: unit number, i: The variables unit number and i are declared as
integers. unit number represents the file identifier, and i is used in the loop.

• CHARACTER(len=20) :: filename: This declares a character variable filename

with a length of 20 characters to store the name of the file.

• OPEN(unit=unit number, file=filename, status=’unknown’): Opens the file
output.txt with the file unit specified by unit number. The status=’unknown’

allows Fortran to create the file if it doesn’t exist or overwrite it if it already exists.

• DO i = 1, 5: This loop runs from 1 to 5, writing a line to the file in each iteration.

• WRITE(unit number, *) ’Line number:’, i: This statement writes the text ’Line
number:’ followed by the value of i to the file.

• CLOSE(unit number): Closes the file associated with unit number.

To compile the program, use the following commands:

1 $ g f o r t r an f i l e h a n d l i n g . f90 −o f i l e h a n d l i n g

To run the compiled program, use:

1 $ . / f i l e h a n d l i n g

These example programs demonstrate the basic syntax, variables, control structures,
arrays, subroutines, functions, and file handling in Fortran programming. By under-
standing these concepts, you can start writing your own Fortran programs for scientific
and engineering applications.

© 2024 Nitesh Kumar. All rights reserved. 12
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1.7 Linking external libraries

Linking to external libraries in Fortran is a common task when you want to leverage
precompiled libraries such as LAPACK, BLAS, or others for numerical and scientific
computations. This document will explain the steps to link Fortran programs with ex-
ternal libraries using the GNU Fortran compiler (gfortran), and provide an example of
linking to the LAPACK library.

1.7.1 Steps to Link to External Libraries

To link an external library to your Fortran program, follow these steps:

1. Install the necessary libraries: Ensure that the external library is installed on
your system. For example, you can install LAPACK and BLAS on Linux using the
following command:

1 sudo apt−get i n s t a l l l i b l apack−dev l i b b l a s −dev
2

2. Compile the Fortran code: Use the gfortran compiler to compile your Fortran
code and link it to the library using the -l option.

3. Link during compilation: Use the -L option to specify the path to the external
library and the -l option to link against the library.

1.7.2 Example: Solving a Linear System using LAPACK

Below is an example Fortran program that solves a system of linear equations Ax = b
using the LAPACK routine dgesv, which performs LU decomposition.

1.7.3 Fortran Code

1 PROGRAM so l v e l i n e a r s y s t em
2 USE, INTRINSIC : : i s o c b i n d i n g
3 IMPLICIT NONE
4

5 INTEGER, PARAMETER : : n = 3
6 INTEGER : : i n f o
7 REAL(KIND=c double ) , DIMENSION(n , n) : : A
8 REAL(KIND=c double ) , DIMENSION(n) : : B
9 INTEGER, DIMENSION(n) : : i p i v

10

11 ! Matrix A (3 x3 )
12 A = RESHAPE( [ 3 . 0 d0 , 1 . 0 d0 , 2 . 0 d0 , &
13 6 .0 d0 , 3 . 0 d0 , 4 . 0 d0 , &
14 9 .0 d0 , 5 . 0 d0 , 8 . 0 d0 ] , [ n , n ] )
15

16 ! Right−hand s i d e vec to r B (3 x1 )
17 B = [ 1 . 0 d0 , 0 . 0 d0 , 2 . 0 d0 ]
18

19 ! Ca l l LAPACK subrout ine to s o l v e the system o f equat ions A∗x = B
20 CALL dgesv (n , 1 , A, n , ip iv , B, n , i n f o )
21

© 2024 Nitesh Kumar. All rights reserved. 13
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22 ! Check f o r e r r o r s
23 IF ( i n f o /= 0) THEN
24 PRINT ∗ , ’ Error : LAPACK dgesv f a i l e d with i n f o =’ , i n f o
25 ELSE
26 PRINT ∗ , ’ So lu t i on vec to r X: ’
27 PRINT ∗ , B
28 END IF
29

30 END PROGRAM so l v e l i n e a r s y s t em

In this program:

• The matrix A is a 3x3 matrix, and B is a 3x1 vector. The goal is to solve Ax = B
for the unknown vector x.

• dgesv is the LAPACK routine that performs the LU decomposition and solves the
system of equations.

Explanation

• PROGRAM solve linear system: This statement starts the main program block
named solve linear system.

• USE, INTRINSIC :: iso c binding: This module provides definitions for inter-
operability with C, particularly for specifying precision with c double.

• IMPLICIT NONE: This directive requires explicit declaration of all variables, helping
to avoid errors due to undeclared variables.

• INTEGER, PARAMETER :: n = 3: This declares an integer parameter n with a
value of 3, representing the size of the matrix and vector.

• INTEGER :: info: This integer variable will store the error information returned
by the LAPACK subroutine.

• REAL(KIND=c double), DIMENSION(n,n) :: A: Declares a 3x3 matrix A of type
REAL(KIND=c double) for high-precision floating-point numbers.

• REAL(KIND=c double), DIMENSION(n) :: B: Declares a 3x1 vector B of the same
floating-point type.

• INTEGER, DIMENSION(n) :: ipiv: Declares an integer array ipiv used by the
LAPACK subroutine to store pivot indices.

• A = RESHAPE([...] [,n,n]): Initializes the matrix A with specific values and
reshapes it to a 3x3 matrix.

• B = [1.0d0, 0.0d0, 2.0d0]: Initializes the vector B with given values.

• CALL dgesv(n, 1, A, n, ipiv, B, n, info): Calls the LAPACK subroutine
dgesv to solve the system of linear equations A*x = B. Here, n is the size of the
matrix, 1 is the number of right-hand sides, A is the coefficient matrix, ipiv is the
pivot index array, B is the right-hand side vector, and info will hold the exit status.
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• IF (info /= 0): Checks if the LAPACK subroutine encountered an error. If info
is not zero, an error message is printed.

• PRINT *, ’Solution vector X:’: If there is no error, the solution vector B is
printed, which contains the solution to the system.

• END PROGRAM solve linear system: Ends the program.

1.7.4 Compilation and Linking

To compile and link the program with the LAPACK and BLAS libraries, use the following
commands:

1 g f o r t r an s o l v e l i n e a r s y s t em . f90 −o s o l v e l i n e a r s y s t em −l l apa ck − l b l a s

Here:

• -llapack links the LAPACK library.

• -lblas links the BLAS library, which is a prerequisite for LAPACK.

If the libraries are not in the default location, you can specify the path using the -L

option:

1 g f o r t r an s o l v e l i n e a r s y s t em . f90 −o s o l v e l i n e a r s y s t em −L/usr / l o c a l / l i b −
l l apa ck − l b l a s

1.7.5 Running the Program

Once the program is compiled, you can run it using:

1 . / s o l v e l i n e a r s y s t em

The output will display the solution vector x for the system Ax = b.

1.8 Conclusion

This chapter introduced you to the basics of working with Linux and FORTRAN 90. You
learned how to navigate the Linux file system, write a simple ”Hello, World!” program,
and compile and execute FORTRAN code using the gfortran compiler. In subsequent
chapters, we’ll dive deeper into advanced FORTRAN features such as arrays, file handling,
and scientific computing techniques.
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Chapter 2

Introduction to C++

C++ is a general-purpose programming language created as an extension of C by Bjarne
Stroustrup in the early 1980s. It supports both procedural and object-oriented program-
ming paradigms, making it versatile for systems programming, game development, and
real-time applications.

2.1 Basic Syntax

C++ programs consist of statements that are grouped into functions and classes. The
main function, int main(), is the starting point of any C++ program. Statements in
C++ are terminated by semicolons, and the language is case-sensitive.

2.2 Variables and Data Types

C++ supports several basic data types, such as integers (int), floating-point numbers
(float, double), characters (char), and booleans (bool). Variables are declared by
specifying the type followed by the variable name.

2.3 Control Structures

C++ provides control structures like if-else, switch-case, loops (for, while, and
do-while), and goto statements for controlling the flow of the program.

2.4 Functions

Functions in C++ allow for code reuse and modularization. A function is defined by
specifying a return type, a name, and a list of parameters. The function body is enclosed
in curly braces {}.

2.5 Arrays and Vectors

Arrays in C++ are a collection of elements of the same type. They are declared with a
fixed size and can be single or multi-dimensional. Vectors, from the Standard Template
Library (STL), offer dynamic sizing and more flexibility than arrays.

17
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2.6 Object-Oriented Programming (OOP)

C++ is known for its support of object-oriented programming. It introduces the concepts
of classes and objects, inheritance, polymorphism, encapsulation, and abstraction, which
allow for modeling real-world entities in a more intuitive way.

2.7 File Handling

C++ provides file handling mechanisms through the fstream library. You can read from
and write to files using ifstream (input file stream) and ofstream (output file stream).

2.8 Advanced Topics

Advanced features of C++ include templates, exception handling, operator overloading,
and the Standard Template Library (STL) for generic programming. These features
provide flexibility and efficiency in coding.

2.9 Example Programs

2.9.1 Basic syntax

1 #inc lude <iostream>
2 us ing namespace std ;
3

4 i n t main ( ) {
5 cout << ”Hel lo , World ! ” << endl ;
6 re turn 0 ;
7 }

To compile the program, use the following commands:

1 $ g++ he l l o . cpp −o h e l l o

To run the compiled program, use:

1 $ . / h e l l o

Output:

1 Hel lo , World !

2.9.2 Variables and data types

1 #inc lude <iostream>
2 us ing namespace std ;
3

4 i n t main ( ) {
5 i n t i = 10 ;
6 f l o a t f = 3 . 1 4 ;
7 char c = ’A ’ ;
8 bool b = true ;
9

10 cout << ” In t eg e r : ” << i << endl ;
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11 cout << ”Float : ” << f << endl ;
12 cout << ”Character : ” << c << endl ;
13 cout << ”Boolean : ” << b << endl ;
14

15 re turn 0 ;
16 }

To compile the program, use the following commands:

1 $ g++ va r i a b l e s . cpp −o v a r i a b l e s

To run the compiled program, use:

1 $ . / v a r i a b l e s

Output:

1 I n t eg e r : 10
2 Float : 3 .14
3 Character : A
4 Boolean : 1

2.9.3 Control structures

1 #inc lude <iostream>
2 us ing namespace std ;
3

4 i n t main ( ) {
5 i n t i = 5 ;
6

7 i f ( i > 0) {
8 cout << ” Po s i t i v e ” << endl ;
9 } e l s e {

10 cout << ”Negative ” << endl ;
11 }
12

13 f o r ( i n t j = 1 ; j <= 5 ; j++) {
14 cout << j << endl ;
15 }
16 re turn 0 ;
17 }

To compile the program, use the following commands:

1 $ g++ con t r o l . cpp −o con t r o l

To run the compiled program, use:

1 $ . / c on t r o l

Output:

1 Pos i t i v e
2 1
3 2
4 3
5 4
6 5

switch case:
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1 #inc lude <iostream>
2 us ing namespace std ;
3

4 i n t main ( ) {
5 i n t i = 5 ;
6

7 switch ( i ) {
8 case 1 :
9 cout << ”One” << endl ;

10 break ;
11 case 2 :
12 cout << ”Two” << endl ;
13 break ;
14 de f au l t :
15 cout << ”Other” << endl ;
16 }
17

18 re turn 0 ;
19 }

To compile the program, use the following commands:

1 $ g++ con t r o l 1 . cpp −o c on t r o l 1

To run the compiled program, use:

1 $ . / c on t r o l 1

Output:

1 Other

The flowchart of switch-case statements:

Figure 2.1: Switch case statements
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2.9.4 Arrays and vectors

1 #inc lude <iostream>
2 #inc lude <vector>
3 us ing namespace std ;
4

5 i n t main ( ) {
6 i n t a r r [ 3 ] = {1 , 2 , 3} ;
7 vector<int> vec = {1 , 2 , 3 , 4} ;
8

9 cout << ”Array e lements : ” ;
10 f o r ( i n t i = 0 ; i < 3 ; i++) {
11 cout << ar r [ i ] << ” ” ;
12 }
13 cout << endl ;
14

15 cout << ”Vector e lements : ” ;
16 f o r ( i n t i = 0 ; i < vec . s i z e ( ) ; i++) {
17 cout << vec [ i ] << ” ” ;
18 }
19 cout << endl ;
20

21 re turn 0 ;
22 }

To compile the program, use the following commands:

1 $ g++ arrays . cpp −o ar rays

To run the compiled program, use:

1 $ . / a r rays

Output:

1 Array elements : 1 2 3
2 Vector e lements : 1 2 3 4

2.9.5 Functions

1 #inc lude <iostream>
2 us ing namespace std ;
3

4 i n t add ( i n t a , i n t b) {
5 re turn a + b ;
6 }
7

8 i n t main ( ) {
9 i n t x = 5 , y = 10 ;

10 i n t sum = add (x , y ) ;
11 cout << ”Sum: ” << sum << endl ;
12 re turn 0 ;
13 }

To compile the program, use the following commands:

1 $ g++ func t i on s . cpp −o func t i on s

To run the compiled program, use:

1 $ . / f unc t i on s
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Output:

1 Sum: 15

2.9.6 File handling

1 // C++ Program to Read a F i l e Line by Line us ing i f s t r e am
2 #inc lude <fstream>
3 #inc lude <iostream>
4 #inc lude <s t r i ng>
5

6 us ing namespace std ;
7

8 i n t main ( )
9 {

10 // Open the f i l e ”abc . txt ” f o r read ing
11 i f s t r e am inpu tF i l e ( ”abc . txt ” ) ;
12

13 // Var iab le to s t o r e each l i n e from the f i l e
14 s t r i n g l i n e ;
15

16 // Read each l i n e from the f i l e and pr in t i t
17 whi le ( g e t l i n e ( inputF i l e , l i n e ) ) {
18 // Process each l i n e as needed
19 cout << l i n e << endl ;
20 }
21

22 // Always c l o s e the f i l e when done
23 i npu tF i l e . c l o s e ( ) ;
24

25 re turn 0 ;
26 }

To compile the program, use the following commands:

1 $ g++ f i l e h a n d l i n g . cpp −o f i l e h a n d l i n g

To run the compiled program, use:

1 $ . / f i l e h a n d l i n g

The example program to write into a file in C++ using ‘ofstream’:

1 #inc lude <iostream>
2 #inc lude <fstream> // Required f o r f i l e handl ing
3 us ing namespace std ;
4

5 i n t main ( ) {
6 // Dec lare an output f i l e stream ( ofstream ) ob j e c t
7 ofstream outputF i l e ;
8

9 // Open a f i l e named ”example . txt ”
10 outputF i l e . open ( ”example . txt ” ) ;
11

12 // Check i f the f i l e opened s u c c e s s f u l l y
13 i f ( ! outputF i l e ) {
14 cout << ”Error opening f i l e ! ” << endl ;
15 re turn 1 ; // Exit the program with an e r r o r code
16 }
17
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18 // Write data to the f i l e
19 outputF i l e << ”This i s a s imple example o f wr i t i ng to a f i l e in C++.\n”

;
20 outputF i l e << ” F i l e handl ing i s important f o r many app l i c a t i o n s .\n” ;
21 outputF i l e << ”Learning how to wr i t e and read f i l e s i s e s s e n t i a l !\n” ;
22

23 // Close the f i l e
24 outputF i l e . c l o s e ( ) ;
25

26 // Not i fy the user
27 cout << ”Data s u c c e s s f u l l y wr i t t en to the f i l e ! ” << endl ;
28

29 re turn 0 ;
30 }

2.10 Pointers in C++

A pointer in C++ is a variable that stores the memory address of another variable.
Pointers are widely used in C++ for dynamic memory management, passing parameters
by reference, and for working with arrays and data structures.

The syntax for declaring a pointer is:

1 type∗ pointer name = &var name ;

Here, type refers to the data type that the pointer will point to.
Key operations with pointers:

• Address-of operator (&): Used to get the address of a variable.

• Dereference operator (*): Used to access the value stored at the address the
pointer holds.

2.10.1 Examples

1 // Example 1 : Bas ic po in t e r usage
2 #inc lude <iostream>
3 us ing namespace std ;
4

5 i n t main ( ) {
6 i n t var = 10 ;
7 i n t ∗ ptr = &var ; // Pointer to var
8

9 cout << ”Value o f var : ” << var << endl ;
10 cout << ”Address o f var : ” << &var << endl ;
11 cout << ”Value s to r ed in ptr ( address o f var ) : ” << ptr << endl ;
12 cout << ”Dere f e r enc ing ptr to get va lue o f var : ” << ∗ptr << endl ;
13

14 re turn 0 ;
15 }

2.11 Arrays in C++

An array in C++ is a collection of elements of the same data type, stored in contiguous
memory locations. Arrays can be accessed using index values starting from 0.
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The syntax for declaring an array is:

1 type array name [ s i z e ] = { , , . . . } ;

Important properties of arrays:

• Arrays can store multiple values in a single variable.

• The elements in an array are stored in contiguous memory locations.

• Arrays can be passed to functions by reference, meaning the memory address of the
first element is passed.

2.11.1 Examples

1 // Example 2 : Working with ar rays
2 #inc lude <iostream>
3 us ing namespace std ;
4

5 i n t main ( ) {
6 i n t a r r [ 5 ] = {1 , 2 , 3 , 4 , 5} ;
7

8 // Access ing array e lements us ing i n d i c e s
9 cout << ” F i r s t element : ” << ar r [ 0 ] << endl ;

10 cout << ”Third element : ” << ar r [ 2 ] << endl ;
11

12 // Using a loop to p r in t a l l e lements
13 f o r ( i n t i = 0 ; i < 5 ; i++) {
14 cout << ”Element at index ” << i << ” : ” << ar r [ i ] << endl ;
15 }
16

17 re turn 0 ;
18 }

2.12 Pointers and Arrays

In C++, arrays and pointers are closely related. The name of an array acts as a pointer
to the first element of the array. This allows for pointer arithmetic and manipulation of
array elements via pointers.

2.12.1 Examples

1 // Example 3 : Po inte r s and ar rays
2 #inc lude <iostream>
3 us ing namespace std ;
4

5 i n t main ( ) {
6 i n t a r r [ 3 ] = {10 , 20 , 30} ;
7 i n t ∗ ptr = ar r ; // ptr po in t s to the f i r s t element o f the array
8

9 // Access ing array e lements v ia po in t e r
10 f o r ( i n t i = 0 ; i < 3 ; i++) {
11 cout << ”Element ” << i << ” : ” << ar r [ i ] << endl ;
12 cout << ”Element ” << i << ” : ” << ∗( ptr + i ) << endl ;
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13 }
14

15 re turn 0 ;
16 }

2.13 Dynamic list Example

In this example, we need to manage the scores of a class of students. Since the number of
students is unknown at compile-time, we will use dynamic memory allocation to create
an array to store their scores at runtime. This demonstrates how pointers are used in
dynamic memory management.

1 // Example : Managing a dynamic l i s t o f student s c o r e s
2 #inc lude <iostream>
3 us ing namespace std ;
4

5 i n t main ( ) {
6 i n t numStudents ;
7

8 // Asking the user f o r the number o f s tudents
9 cout << ”Enter the number o f s tudents : ” ;

10 c in >> numStudents ;
11

12 // Dynamically a l l o c a t i n g an array to s t o r e student s c o r e s
13 f l o a t ∗ s c o r e s = new f l o a t [ numStudents ] ;
14

15 // Taking input f o r student s c o r e s
16 f o r ( i n t i = 0 ; i < numStudents ; ++i ) {
17 cout << ”Enter s co r e f o r student ” << i+1 << ” : ” ;
18 c in >> s c o r e s [ i ] ;
19 }
20

21 // Ca l cu l a t ing the average s co r e
22 f l o a t sum = 0 ;
23 f o r ( i n t i = 0 ; i < numStudents ; ++i ) {
24 sum += sco r e s [ i ] ;
25 }
26 f l o a t average = sum / numStudents ;
27

28 // Disp lay ing the average s co r e
29 cout << ”Average s co r e : ” << average << endl ;
30

31 // Free ing the dynamical ly a l l o c a t e d memory
32 de l e t e [ ] s c o r e s ;
33

34 re turn 0 ;
35 }

2.13.1 Explanation

In this program, the number of students is provided by the user at runtime. The program
dynamically allocates memory for the student scores using a pointer. The key steps are
as follows:
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• Dynamic Memory Allocation: new float[numStudents] allocates memory for
an array of floats based on the number of students entered by the user. This is useful
when the size of data is not known during compile-time.

• Pointer Usage: The pointer scores stores the address of the first element of the
dynamically allocated array. The notation scores[i] is used to access the array
elements. This is equivalent to *(scores + i), where pointer arithmetic is applied
to traverse the memory.

• Memory Deallocation: The program uses delete[] to free the dynamically
allocated memory after it is no longer needed, preventing memory leaks.

2.14 Significance of Using Pointers

Pointers in C++ are crucial for dynamic memory management, which provides several
benefits in real-world applications:

• Efficient Memory Usage: Pointers allow for dynamic allocation of memory,
meaning we can allocate memory based on actual needs at runtime. This avoids
wastage of memory that occurs when arrays are declared with a fixed size at compile-
time.

• Flexibility: Since the size of the array is determined at runtime, the program can
handle variable amounts of data. This is particularly important when dealing with
user input or data that fluctuates during program execution.

• Performance: Pointers can directly access and manipulate memory, making them
more efficient in scenarios where performance is critical, such as handling large
datasets, network buffers, or game engines.

• Dynamic Data Structures: Many advanced data structures like linked lists,
trees, and graphs rely on pointers to manage memory and relationships between
elements. These structures are widely used in algorithm design and systems pro-
gramming.
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Chapter 3

Finding Roots of an Equation

In this chapter, we will explore three fundamental numerical methods for finding roots
of equations: the Bisection Method, the Secant Method, and Newton-Raphson Method.
Each method will be introduced with theoretical concepts, illustrated with examples, and
followed by practice questions to strengthen your understanding.

Introduction to Root-Finding Methods

Root-finding algorithms are essential in numerical analysis for solving equations of the
form f(x) = 0. We will discuss three methods here:

• Bisection Method - a simple and reliable method.

• Secant Method - a faster approach that avoids calculating derivatives.

• Newton-Raphson Method - a powerful method using derivatives for rapid con-
vergence.

3.1 Bisection Method

The Bisection Method is a numerical approach to find a root of a continuous function
f(x) within a specified interval. It is particularly useful when the function changes sign
over an interval, indicating the presence of a root.

3.1.1 Method Explanation

The Bisection Method works as follows:

1. Choose an interval [a, b] such that f(a) · f(b) < 0. This guarantees that there is at
least one root in [a, b].

2. Calculate the midpoint m = a+b
2
.

3. Evaluate f(m). If f(m) = 0, then m is the root. Otherwise, update the interval as
follows:

• If f(a) · f(m) < 0, set b = m.
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• If f(b) · f(m) < 0, set a = m.

4. Repeat the steps until the interval [a, b] is sufficiently small, or until the midpoint
m is accurate to the desired precision.

3.1.2 Example: Finding the Root of f(x) = sinx - x cosx

Let’s find the root of the function f(x) = sinx − x cosx in the interval [4, 5] using the
Bisection Method. We’ll proceed step-by-step, calculating each midpoint and evaluating
the function to see if we’ve narrowed down the root.

Initial Setup

f(x) = sinx− x cosx

Evaluating f(x) at the endpoints:

f(4) = sin(4)− 4 cos(4) ≈ 1.8577719881465196

f(5) = sin(5)− 5 cos(5) ≈ −2.3772352019792695

Since f(4) · f(5) < 0, there is a root between x = 4 and x = 5.

Iterative Steps

The following table shows the iterative steps for the Bisection Method applied to f(x) =
sinx− x cosx in the interval [4, 5]:

Iteration a b m = a+b
2

f(a) f(b) f(a) · f(b) Interval Update
1 4 5 4.5 1.85777 -2.37724 -4.42 (< 0) [4,5]
2 4 4.5 4.25 1.85777 -0.02895 -0.05 (< 0) [4,4.5]
3 4.25 4.5 4.375 1.00088 -0.02895 -0.03 (< 0) [4.25,4.5]
4 4.375 4.5 4.4375 0.50461 -0.02895 -0.01 (< 0) [4.375,4.5]
5 4.4375 4.5 4.46875 0.24206 -0.02895 -0.01 (< 0) [4.4375,4.5]
6 4.46875 4.5 4.484375 0.10756 -0.02895 -0.00 (< 0) [4.46875,4.5]
7 4.484375 4.5 4.4921875 0.03955 -0.02895 -0.00 (< 0) [4.484375,4.5]
8 4.4921875 4.5 4.49609375 0.00536 -0.02895 -0.00 (< 0) [4.4921875,4.5]
9 4.4921875 4.49609375 4.494140625 0.00536 -0.01178 -0.00 (< 0) [4.4921875,4.49609375]
10 4.4921875 4.494140625 4.4931640625 0.00536 -0.00321 -0.00 (< 0) [4.4921875,4.494140625]
11 4.4931640625 4.494140625 4.49365234375 0.00108 -0.00321 -0.00 (< 0) [4.4931640625,4.494140625]

Table 3.1: Bisection Method Iterations for f(x) = sin x− x cosx in the interval [4, 5]

Final Answer

After continuing the iterations, we find that the root of f(x) = sin x − x cosx to the
desired precision in the interval [4, 5] is approximately:

x ≈ 4.49365234375

3.1.3 Error Estimation in the Bisection Method

In the Bisection Method, we iteratively narrow down the interval [a, b] that contains the
root. With each iteration, the interval’s length is halved, allowing us to estimate the
error and the convergence rate.
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Absolute Error Bound

If we define the root as r, then after n iterations, the interval [an, bn] contains r. The
error in the approximation mn = an+bn

2
, which is the midpoint of the interval, is bounded

by half the interval length:

|mn − r| ≤ bn − an
2

=
b− a

2n

where [a, b] is the initial interval.
As n increases, the interval [an, bn] becomes smaller, leading to a smaller error bound.

This error bound tells us how close our approximation mn is to the actual root r.

Number of Iterations for Desired Accuracy

To achieve a specific accuracy ϵ, we can calculate the required number of iterations N as
follows:

N ≥ log2

(
b− a

ϵ

)
This formula allows us to determine the minimum number of iterations needed to ensure
that our approximation is within a specified tolerance ϵ from the true root.

Convergence Rate

The Bisection Method has a convergence rate of O(2−n), which means the error decreases
by approximately half with each iteration. This linear convergence is slower compared to
other methods like the Newton-Raphson Method, which has quadratic convergence, but
the Bisection Method is more robust and guarantees convergence as long as the initial
interval contains a root.

Example of Error Estimation

Suppose we start with an interval [4, 5] and want to find the root of f(x) = sin x−x cosx
to within ϵ = 0.001. Using the formula above, we can estimate the number of iterations
needed:

N ≥ log2

(
5− 4

0.001

)
= log2(1000) ≈ 10

Therefore, at least 10 iterations are required to ensure that the error in our approximation
is less than 0.001.

This error estimation helps us plan the number of iterations in advance and gives con-
fidence that our final approximation is close to the true root within the desired accuracy.

3.1.4 Practice Questions

1. Use the Bisection Method to find the root of f(x) = x2 − 4 on the interval [0, 3] to
three decimal places.

2. Apply the Bisection Method to find the root of f(x) = cos x− x on [0, 1].
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3.2 Secant Method

The Secant method is a numerical technique used to find the root of a function f(x)
by using a secant line to approximate the function near the root. Unlike the Bisection
method, the two initial points for the Secant method do not need to lie on opposite sides
of the root, but they must be sufficiently close to it. However, choosing points on opposite
sides of the root often improves the stability of the method.

The Secant method uses two initial points, x1 and x2, and approximates the function
by a straight line passing through these two points. The root is then estimated as the
x-intercept of this secant line. The equation of the secant line passing through the points
(x1, f(x1)) and (x2, f(x2)) is given by:

y − f(x2) =
f(x2)− f(x1)

x2 − x1

(x− x2)

Setting y = 0 to find the x-intercept (the approximation of the root), we get:

0− f(x2) =
f(x2)− f(x1)

x2 − x1

(x3 − x2)

Solving for x3, the next approximation of the root is:

x3 = x2 − f(x2)
x2 − x1

f(x2)− f(x1)

This formula is iterated with the newly found point x3 replacing x1, and x2 replacing
x3 in subsequent steps. The process is repeated until the values of xn converge to a root
with the desired level of accuracy.

3.2.1 Method Explanation

Given two points x0 and x1 close to the root, the secant method approximates the root
using:

xn+1 = xn − f(xn) ·
xn − xn−1

f(xn)− f(xn−1)

4 4.2 4.4 4.6 4.8 5 5.2

−2.5

1

x0

x2

x1 x

f(x)

Figure 3.1: Secant method on f(x) = sin(x) - xcos(x).
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3.2.2 Example: Solving f(x) = sinx− x cosx = 0 for x ∈ [4, 5]

Let’s apply the Secant Method to find the root of f(x) = sin x−x cosx with x in radians
and initial guesses x0 = 4.0 and x1 = 5.0. We will continue the iterations until the
function value is close to zero, recording the process in a table.

f(x) = sinx− x cosx

Detailed Iterations in Table

Table 3.2: Solving f(x) = sinx− x cosx using Secant method.
Iteration xn xn−1 f(xn) xn+1 = xn − f(xn)

xn−xn−1

f(xn)−f(xn−1)

0 4.0 - f(4.0) = sin(4.0)− 4.0 cos(4.0) ≈ −2.613 -
1 5.0 4.0 f(5.0) = sin(5.0)− 5.0 cos(5.0) ≈ 3.418 x2 = 4.0− (−2.613) 4.0−5.0

−2.613−3.418
≈ 4.433

2 4.433 5.0 f(4.433) ≈ −0.432 x3 = 4.433− (−0.432) 4.433−5.0
−0.432−3.418

≈ 4.490

3 4.490 4.433 f(4.490) ≈ −0.030 x4 = 4.490− (−0.030) 4.490−4.433
−0.030+0.432

≈ 4.494

4 4.494 4.490 f(4.494) ≈ 0.0005 x5 = 4.494− 0.0005 4.494−4.490
0.0005+0.030

≈ 4.4934

5 4.4934 4.494 f(4.4934) ≈ 0 Converged to root

Explanation of Iterations

In this table:
- Iteration 0: We start with initial guesses x0 = 4.0 and x1 = 5.0, calculating f(x0) ≈
−2.613 and f(x1) ≈ 3.418.
- Iteration 1: Using the Secant formula, we find x2 ≈ 4.433.
- Iteration 2 to 4: We continue the iterations, refining our approximations.
- Iteration 5: We reach x ≈ 4.4934, where f(x) ≈ 0, indicating the approximate root is
x ≈ 4.4934.

The Secant Method has successfully approximated the root of f(x) = sin x − x cosx
in the interval [4, 5] to be around x ≈ 4.4934. This iterative approach converges quickly
and avoids the need for derivatives, making it a practical alternative to other root-finding
methods.

3.2.3 Practice Questions

1. Find the root of f(x) = x2 − 2x + 1 using the Secant Method with initial guesses
x0 = 1.5 and x1 = 2.

2. Use the Secant Method to approximate the root of f(x) = sin x − 0.5 with initial
guesses x0 = 0.5 and x1 = 1.

3.3 Newton-Raphson Method

The Newton-Raphson Method uses the derivative to find a root of a function.
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3.3.1 Method Explanation

Starting with an initial guess x0, update x using:

xn+1 = xn −
f(xn)

f ′(xn)

3.3.2 Example

Find the root of f(x) = x3 − 3x+ 2 using Newton-Raphson with x0 = 0.5.

3.3.3 Practice Questions

1. Use the Newton-Raphson Method to find the root of f(x) = x2 − 4x + 3 starting
with x0 = 2.5.

2. Find the root of f(x) = tan(x)− x using an initial guess of x0 = 4.

3.4 Summary and Comparison of Methods

In this chapter, we explored three methods of finding roots, each with unique advantages
and limitations. Practice and apply these methods to determine which is best suited for
a given problem.
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