
Introduction to Computational Physics

UPES Dehradun

Introduction to Computational Physics - 2025

Dr. Nitesh Kumar

January 23, 2025

© 2025 Nitesh Kumar. All rights reserved. 2

Contents

1 Introduction to FORTRAN 90 on Linux 7
1.1 Getting Started with Linux . 7

1.1.1 Basic Linux Commands . 7
1.1.2 File System Hierarchy . 8

1.2 Historical Development of FORTRAN . 8
1.2.1 Evolution of FORTRAN . 8

1.3 Setting Up the FORTRAN Environment on Linux 8
1.3.1 Installing GNU Fortran Compiler (gfortran) 9

1.4 Introduction to Fortran . 9
1.4.1 Basic Syntax . 9
1.4.2 Variables and Data Types . 9
1.4.3 Control Structures . 9
1.4.4 Arrays . 9
1.4.5 Subroutines and Functions . 9
1.4.6 File Handling . 10

1.5 Advanced Topics . 10
1.6 Example Programs . 10

1.6.1 Basic syntax . 10
1.6.2 Variables and data types . 10
1.6.3 Control structures . 11
1.6.4 Arrays . 12
1.6.5 Functions . 12
1.6.6 Subroutines . 13
1.6.7 File handling . 14

1.7 Linking external libraries . 15
1.7.1 Steps to Link to External Libraries 15
1.7.2 Example: Solving a Linear System using LAPACK 15
1.7.3 Fortran Code . 16
1.7.4 Compilation and Linking . 17
1.7.5 Running the Program . 18

1.8 Matrix Multiplication of size 2x2 . 18
1.8.1 Flowchart . 18
1.8.2 Code . 18

1.9 Conclusion . 20

2 Introduction to C++ 23
2.1 Basic Syntax . 23
2.2 Variables and Data Types . 23

3

Contents

2.3 Control Structures . 23
2.4 Functions . 23
2.5 Arrays and Vectors . 23
2.6 Object-Oriented Programming (OOP) 24
2.7 File Handling . 24
2.8 Advanced Topics . 24
2.9 Example Programs . 24

2.9.1 Basic syntax . 24
2.9.2 Variables and data types . 24
2.9.3 Control structures . 25
2.9.4 Arrays and vectors . 26
2.9.5 Functions . 28
2.9.6 File handling . 28

2.10 Pointers in C++ . 29
2.10.1 Examples . 30

2.11 Arrays in C++ . 30
2.11.1 Examples . 31

2.12 Pointers and Arrays . 31
2.12.1 Examples . 31

2.13 Dynamic list Example . 32
2.13.1 Explanation . 32

2.14 Significance of Using Pointers . 33

3 Introduction to Gnuplot 37
3.1 Overview . 37
3.2 Getting Started with Gnuplot . 37
3.3 Plotting Mathematical Functions . 37
3.4 Plotting Data from Files . 37
3.5 Customizing Plots . 38
3.6 Examples . 38

4 Introduction to LATEX 41
4.1 Introduction to LATEX . 41
4.2 Getting Started with LATEX . 41

4.2.1 Installing LATEX . 41
4.2.2 First LATEX Document . 42

4.3 The Preamble and Body of a LATEX Document 42
4.3.1 The Preamble . 42
4.3.2 The Body . 43

4.4 Document Structure . 43
4.4.1 Basic Structure . 43
4.4.2 Lists . 44

4.5 Mathematical Typesetting . 44
4.5.1 Inline Math . 44
4.5.2 Displayed Equations . 44
4.5.3 Complex Equations . 45

4.6 Figures and Tables . 46
4.6.1 Inserting Figures . 46

© 2025 Nitesh Kumar. All rights reserved. 4

Contents

4.6.2 Tables . 47
4.7 Cross-referencing and Bibliography . 51

4.7.1 Cross-referencing . 51
4.7.2 Bibliography . 52

4.8 Customizing LATEX Documents . 54
4.8.1 Page Layout . 54
4.8.2 Font and Style . 55
4.8.3 Color and Highlighting . 57

4.9 Error Handling and Debugging . 57
4.9.1 Common LATEX Errors . 58
4.9.2 Debugging Tips . 59
4.9.3 Warnings . 60
4.9.4 Tools for Error-Free LATEX . 60

4.10 Title Page and Its Customization in LaTeX 61
4.10.1 Basic Title Page . 61
4.10.2 Customizing the Title Page . 61
4.10.3 Example of a Customized Title Page 62

5 Finding Roots of an Equation 67
5.1 Bisection Method . 67

5.1.1 Method Explanation . 67
5.1.2 Example: Finding the Root of f(x) = sinx - x cosx 68
5.1.3 Error Estimation in the Bisection Method 68
5.1.4 Practice Questions . 69

5.2 Secant Method . 70
5.2.1 Method Explanation . 70
5.2.2 Example: Solving f(x) = sinx− xcosx = 0 for x ∈ [4, 5] 71
5.2.3 Practice Questions . 71

5.3 Newton-Raphson Method . 71
5.3.1 Method Explanation . 72
5.3.2 Example . 72
5.3.3 Practice Questions . 72

5.4 Summary and Comparison of Methods 72

6 Interpolation 73
6.1 Lagrange Interpolation Formula . 73

© 2025 Nitesh Kumar. All rights reserved. 5

Contents

© 2025 Nitesh Kumar. All rights reserved. 6

Chapter 1

Introduction to FORTRAN 90 on
Linux

1.1 Getting Started with Linux

Before diving into FORTRAN 90, it’s essential to understand some basic Linux com-
mands and environment setup to efficiently work with programming on Linux. Linux is a
powerful and flexible operating system that is widely used for programming and scientific
computing.

1.1.1 Basic Linux Commands

Here are some basic Linux commands you’ll use frequently while working with FORTRAN
and other programming languages:

• pwd: Print the current working directory.

1 $ pwd

2 /home/user

3

• ls: List files and directories.

1 $ ls

2 Documents Downloads hello.f90 Pictures

3

• cd: Change directory.

1 $ cd Documents

2

• mkdir: Create a new directory.

1 $ mkdir fortran_projects

2

• rm: Remove files or directories.

7

Chapter 1. Introduction to FORTRAN 90 on Linux

1 $ rm hello.f90

2

• nano or vim: Command-line text editors. We’ll use nano for simplicity.

1 $ vim hello.f90

2

• gfortran: The GNU Fortran compiler, used for compiling FORTRAN code.

1.1.2 File System Hierarchy

Linux organizes files and directories into a hierarchical structure, starting with the root
directory (/). Some common directories you’ll work with include:

• /home: Contains user home directories.

• /usr: Contains installed software and libraries.

• /etc: Configuration files.

Understanding this structure will help you navigate and manage files while working
on your projects.

1.2 Historical Development of FORTRAN

FORTRAN (FORmula TRANslation) is one of the oldest high-level programming lan-
guages. Originally developed in the 1950s by IBM, it has evolved significantly over the
decades, with FORTRAN 90 being a major revision.

1.2.1 Evolution of FORTRAN

• FORTRAN I (1957): The first compiled high-level language, primarily designed
for scientific and engineering computations.

• FORTRAN IV and 66 (1960s): Introduced subroutines, functions, and better
control structures.

• FORTRAN 77: Improved string handling and more complex control structures.

• FORTRAN 90 (1991): Introduced modern programming concepts like recursion,
modules, dynamic memory allocation, and array programming.

FORTRAN 90 represents a significant step forward from FORTRAN 77, incorporating
many new features designed to improve the flexibility and readability of code.

1.3 Setting Up the FORTRAN Environment on Linux

Before writing any code, you need to install the GNU Fortran compiler. Most Linux
distributions provide the gfortran package.

© 2025 Nitesh Kumar. All rights reserved. 8

Chapter 1. Introduction to FORTRAN 90 on Linux

1.3.1 Installing GNU Fortran Compiler (gfortran)

To install gfortran on a Debian-based system (like Ubuntu), run:

1 $ sudo apt -get update

2 $ sudo apt -get install gfortran

For Red Hat-based systems, use:

1 $ sudo yum install gfortran

After installation, you can check if the compiler is installed correctly:

1 $ gfortran --version

1.4 Introduction to Fortran

Fortran (short for Formula Translation) is a general-purpose, imperative programming
language that is particularly suited for scientific and engineering applications. It was
developed in the 1950s and has since evolved into several versions, with Fortran 90 and
Fortran 95 being the most widely used.

1.4.1 Basic Syntax

Fortran programs are composed of statements, which are written in a fixed-format style.
Each statement begins in column 1 and can extend up to column 72. Statements are
typically written in uppercase, although lowercase is also allowed.

1.4.2 Variables and Data Types

Fortran supports several data types, including integers, real numbers, complex numbers,
and character strings. Variables are declared using the INTEGER, REAL, COMPLEX, or
CHARACTER keywords, followed by the variable name.

1.4.3 Control Structures

Fortran provides various control structures for program flow, including IF-THEN-ELSE

statements, DO loops, and SELECT CASE statements. These structures allow for condi-
tional execution and repetitive tasks.

1.4.4 Arrays

Arrays are an essential part of Fortran programming. They allow you to store and
manipulate multiple values of the same data type. Fortran supports both one-dimensional
and multi-dimensional arrays.

1.4.5 Subroutines and Functions

Subroutines and functions are used to modularize code and improve code reusability.
Subroutines are blocks of code that perform a specific task, while functions return a
value.

© 2025 Nitesh Kumar. All rights reserved. 9

Chapter 1. Introduction to FORTRAN 90 on Linux

1.4.6 File Handling

Fortran provides built-in functions and subroutines for reading from and writing to files.
This allows you to interact with external data files and perform input/output operations.

1.5 Advanced Topics

Fortran also offers advanced features such as modules, derived types, and object-oriented
programming. These features enhance code organization and allow for more complex
programming structures.

1.6 Example Programs

1.6.1 Basic syntax

1 PROGRAM hello

2 PRINT *, ’Hello , World!’

3 END PROGRAM hello

To compile the program, use the following commands:

1 $ gfortran hello.f90 -o hello

To run the compiled program, use:

1 $./ hello

Output:

1 Hello , World!

1.6.2 Variables and data types

1 PROGRAM variables

2 INTEGER :: i

3 REAL :: x

4 COMPLEX :: z

5 CHARACTER(LEN =10) :: name

6 LOGICAL ::

7

8 i = 10

9 x = 3.14

10 z = (1.0, 2.0)

11 name = ’Fortran ’

12

13 PRINT *, ’Integer:’, i

14 PRINT *, ’Real:’, x

15 PRINT *, ’Complex:’, z

16 PRINT *, ’Character:’, name

17 END PROGRAM variables

© 2025 Nitesh Kumar. All rights reserved. 10

Chapter 1. Introduction to FORTRAN 90 on Linux

To compile the program, use the following commands:

1 $ gfortran variables.f90 -o variables

To run the compiled program, use:

1 $./ variables

Output:

1 Integer: 10

2 Real: 3.14000000

3 Complex: (1.00000000 ,2.00000000)

4 Character: Fortran

1.6.3 Control structures

1 PROGRAM control

2 INTEGER :: i

3 i = 5

4

5 IF (i > 0) THEN

6 PRINT *, ’Positive ’

7 ELSE

8 PRINT *, ’Negative ’

9 END IF

10

11 DO i = 1, 5

12 PRINT *, i

13 END DO

14

15 SELECT CASE (i)

16 CASE (1)

17 PRINT *, ’One’

18 CASE (2)

19 PRINT *, ’Two’

20 CASE DEFAULT

21 PRINT *, ’Other ’

22 END SELECT

23 END PROGRAM control

To compile the program, use the following commands:

1 $ gfortran control.f90 -o control

To run the compiled program, use:

1 $./ control

Output:

1 Positive

2 1

3 2

© 2025 Nitesh Kumar. All rights reserved. 11

Chapter 1. Introduction to FORTRAN 90 on Linux

4 3

5 4

6 5

7 Other

1.6.4 Arrays

1 PROGRAM arrays

2 INTEGER , DIMENSION (3) :: a

3 REAL , DIMENSION(2, 2) :: b

4

5 a = [1, 2, 3]

6 b = RESHAPE ([1.0 , 2.0, 3.0, 4.0], [2, 2])

7

8 PRINT *, ’Array a:’, a

9 PRINT *, ’Array b:’

10 DO i = 1, 2

11 PRINT *, b(i, :)

12 END DO

13 END PROGRAM arrays

To compile the program, use the following commands:

1 $ gfortran arrays.f90 -o arrays

To run the compiled program, use:

1 $./ arrays

Output:

1 Array a: 1 2 3

2 Array b:

3 1.00000000 2.00000000

4 3.00000000 4.00000000

1.6.5 Functions

The syntax of the function is given below.

1 type FUNCTION func -name(arg1 , arg2 ,)

2 IMPLICIT NONE

3 [specification part]

4 [execution part]

5 [subprogram part]

6 END FUNCTION func -name

where ‘type’ is the data types like ‘INTEGER’, ‘REAL’, ... etc.
A sample code to add two numbers using Fortran function is given below:

1 program adding

2 IMPLICIT NONE

3 INTEGER :: a, b, addition , add

© 2025 Nitesh Kumar. All rights reserved. 12

Chapter 1. Introduction to FORTRAN 90 on Linux

4 a = 4

5 b = 6

6 addition = add(a, b)

7 print*, a, b, addition

8 END PROGRAM adding

9

10 INTEGER FUNCTION add(x, y)

11 IMPLICIT NONE

12 INTEGER , INTENT(IN) :: x, y

13 add = (x+y)

14 END FUNCTION add

Another way of writing functions in Fortran:

1 program TwoFunctions

2 IMPLICIT NONE

3 REAL :: a, b, A_mean , G_mean

4 READ (*,*) a, b

5 A_mean = ArithMean(a, b)

6 G_mean = GeoMean(a, b)

7 WRITE (*,*) a, b, A_mean , G_Mean

8 CONTAINS

9 REAL FUNCTION ArithMean(a, b)

10 IMPLICIT NONE

11 REAL , INTENT(IN) ::a, b

12 ArithMean = (a+b)/2.0

13 END FUNCTION ArithMean

14

15 REAL FUNCTION GeoMean(a, b)

16 IMPLICIT NONE

17 REAL , INTENT(IN) ::a, b

18 GeoMean = SQRT(a*b)

19 END FUNCTION GeoMean

20 END PROGRAM TwoFunctions

1.6.6 Subroutines

1 PROGRAM main

2 IMPLICIT NONE

3 INTEGER :: x, y, z

4 x = 5

5 y = 2

6 CALL ADD(x, y, z)

7 print*, ’ADDITION IS’, z

8 END PROGRAM main

9

10 SUBROUTINE ADD(a, b, c)

11 IMPLICIT NONE

12 INTEGER , INTENT(IN) :: a, b

13 INTEGER , INTENT(OUT) :: c

14 c = a + b

© 2025 Nitesh Kumar. All rights reserved. 13

Chapter 1. Introduction to FORTRAN 90 on Linux

15 END SUBROUTINE ADD

To compile the program, use the following commands:

1 $ gfortran main.f90 -o main

To run the compiled program, use:

1 $./main

Output:

1 Sum: 15

1.6.7 File handling

This code demonstrates how to write data to a file in Fortran. It opens a file, writes
multiple lines to it, and then closes the file.

1 PROGRAM write_to_file

2 INTEGER :: unit_number

3 INTEGER :: i

4 CHARACTER(len =20) :: filename

5

6 ! Set the file name and the unit number

7 filename = ’output.txt’

8 unit_number = 10

9

10 ! Open the file for writing

11 OPEN(unit=unit_number , file=filename , status=’unknown ’)

12

13 ! Write some data into the file

14 DO i = 1, 5

15 WRITE(unit_number , *) ’Line number:’, i

16 END DO

17

18 ! Close the file

19 CLOSE(unit_number)

20

21 PRINT *, ’Data has been written to ’, filename

22 END PROGRAM write_to_file

Explanation

• PROGRAM write to file: The program starts with a main program block named
write to file.

• INTEGER :: unit number, i: The variables unit number and i are declared as
integers. unit number represents the file identifier, and i is used in the loop.

• CHARACTER(len=20) :: filename: This declares a character variable filename

with a length of 20 characters to store the name of the file.

© 2025 Nitesh Kumar. All rights reserved. 14

Chapter 1. Introduction to FORTRAN 90 on Linux

• OPEN(unit=unit number, file=filename, status=’unknown’): Opens the file
output.txt with the file unit specified by unit number. The status=’unknown’

allows Fortran to create the file if it doesn’t exist or overwrite it if it already exists.

• DO i = 1, 5: This loop runs from 1 to 5, writing a line to the file in each iteration.

• WRITE(unit number, *) ’Line number:’, i: This statement writes the text ’Line
number:’ followed by the value of i to the file.

• CLOSE(unit number): Closes the file associated with unit number.

To compile the program, use the following commands:

1 $ gfortran file_handling.f90 -o file_handling

To run the compiled program, use:

1 $./ file_handling

These example programs demonstrate the basic syntax, variables, control structures,
arrays, subroutines, functions, and file handling in Fortran programming. By under-
standing these concepts, you can start writing your own Fortran programs for scientific
and engineering applications.

1.7 Linking external libraries

Linking to external libraries in Fortran is a common task when you want to leverage
precompiled libraries such as LAPACK, BLAS, or others for numerical and scientific
computations. This document will explain the steps to link Fortran programs with ex-
ternal libraries using the GNU Fortran compiler (gfortran), and provide an example of
linking to the LAPACK library.

1.7.1 Steps to Link to External Libraries

To link an external library to your Fortran program, follow these steps:

1. Install the necessary libraries: Ensure that the external library is installed on
your system. For example, you can install LAPACK and BLAS on Linux using the
following command:

1 sudo apt -get install liblapack -dev libblas -dev

2

2. Compile the Fortran code: Use the gfortran compiler to compile your Fortran
code and link it to the library using the -l option.

3. Link during compilation: Use the -L option to specify the path to the external
library and the -l option to link against the library.

1.7.2 Example: Solving a Linear System using LAPACK

Below is an example Fortran program that solves a system of linear equations Ax = b
using the LAPACK routine dgesv, which performs LU decomposition.

© 2025 Nitesh Kumar. All rights reserved. 15

Chapter 1. Introduction to FORTRAN 90 on Linux

1.7.3 Fortran Code

1 PROGRAM solve_linear_system

2 USE , INTRINSIC :: iso_c_binding

3 IMPLICIT NONE

4

5 INTEGER , PARAMETER :: n = 3

6 INTEGER :: info

7 REAL(KIND=c_double), DIMENSION(n,n) :: A

8 REAL(KIND=c_double), DIMENSION(n) :: B

9 INTEGER , DIMENSION(n) :: ipiv

10

11 ! Matrix A (3x3)

12 A = RESHAPE ([3.0d0, 1.0d0, 2.0d0, &

13 6.0d0 , 3.0d0 , 4.0d0 , &

14 9.0d0 , 5.0d0 , 8.0d0], [n,n])

15

16 ! Right -hand side vector B (3x1)

17 B = [1.0d0, 0.0d0, 2.0d0]

18

19 ! Call LAPACK subroutine to solve the system of equations A*x =

B

20 CALL dgesv(n, 1, A, n, ipiv , B, n, info)

21

22 ! Check for errors

23 IF (info /= 0) THEN

24 PRINT *, ’Error: LAPACK dgesv failed with info =’, info

25 ELSE

26 PRINT *, ’Solution vector X:’

27 PRINT *, B

28 END IF

29

30 END PROGRAM solve_linear_system

In this program:

• The matrix A is a 3x3 matrix, and B is a 3x1 vector. The goal is to solve Ax = B
for the unknown vector x.

• dgesv is the LAPACK routine that performs the LU decomposition and solves the
system of equations.

Explanation

• PROGRAM solve linear system: This statement starts the main program block
named solve linear system.

• USE, INTRINSIC :: iso c binding: This module provides definitions for inter-
operability with C, particularly for specifying precision with c double.

• IMPLICIT NONE: This directive requires explicit declaration of all variables, helping
to avoid errors due to undeclared variables.

© 2025 Nitesh Kumar. All rights reserved. 16

Chapter 1. Introduction to FORTRAN 90 on Linux

• INTEGER, PARAMETER :: n = 3: This declares an integer parameter n with a
value of 3, representing the size of the matrix and vector.

• INTEGER :: info: This integer variable will store the error information returned
by the LAPACK subroutine.

• REAL(KIND=c double), DIMENSION(n,n) :: A: Declares a 3x3 matrix A of type
REAL(KIND=c double) for high-precision floating-point numbers.

• REAL(KIND=c double), DIMENSION(n) :: B: Declares a 3x1 vector B of the same
floating-point type.

• INTEGER, DIMENSION(n) :: ipiv: Declares an integer array ipiv used by the
LAPACK subroutine to store pivot indices.

• A = RESHAPE([...] [,n,n]): Initializes the matrix A with specific values and
reshapes it to a 3x3 matrix.

• B = [1.0d0, 0.0d0, 2.0d0]: Initializes the vector B with given values.

• CALL dgesv(n, 1, A, n, ipiv, B, n, info): Calls the LAPACK subroutine
dgesv to solve the system of linear equations A*x = B. Here, n is the size of the
matrix, 1 is the number of right-hand sides, A is the coefficient matrix, ipiv is the
pivot index array, B is the right-hand side vector, and info will hold the exit status.

• IF (info /= 0): Checks if the LAPACK subroutine encountered an error. If info
is not zero, an error message is printed.

• PRINT *, ’Solution vector X:’: If there is no error, the solution vector B is
printed, which contains the solution to the system.

• END PROGRAM solve linear system: Ends the program.

1.7.4 Compilation and Linking

To compile and link the program with the LAPACK and BLAS libraries, use the following
commands:

1 gfortran solve_linear_system.f90 -o solve_linear_system -llapack

-lblas

Here:

• -llapack links the LAPACK library.

• -lblas links the BLAS library, which is a prerequisite for LAPACK.

If the libraries are not in the default location, you can specify the path using the -L

option:

1 gfortran solve_linear_system.f90 -o solve_linear_system -L/usr/

local/lib -llapack -lblas

© 2025 Nitesh Kumar. All rights reserved. 17

Chapter 1. Introduction to FORTRAN 90 on Linux

1.7.5 Running the Program

Once the program is compiled, you can run it using:

1 ./ solve_linear_system

The output will display the solution vector x for the system Ax = b.

1.8 Matrix Multiplication of size 2x2

1.8.1 Flowchart

Start

Input matrices A and B

Initialize C to zero

For i = 1 to 2 For j = 1 to 2 For k = 1 to 2

Compute C(i, j) = C(i, j) + A(i, k) ·B(k, j)

End k loopEnd j loopEnd i loop

Output matrix C

Stop

1.8.2 Code

1 program matrix_multiplication

2 implicit none

© 2025 Nitesh Kumar. All rights reserved. 18

Chapter 1. Introduction to FORTRAN 90 on Linux

3 real :: A(2, 2), B(2, 2), C(2, 2)

4

5 ! Input matrices

6 A = reshape ([1.0 , 2.0, 3.0, 4.0], shape(A)) ! Matrix A

7 B = reshape ([5.0 , 6.0, 7.0, 8.0], shape(B)) ! Matrix B

8

9 ! Call the function to multiply A and B, storing the result

in C

10 C = matrix_multiply(A, B)

11

12 ! Output the result

13 print *, "Matrix A:"

14 call print_matrix(A)

15 print *, "Matrix B:"

16 call print_matrix(B)

17 print *, "Resultant Matrix C (A * B):"

18 call print_matrix(C)

19

20 contains

21

22 ! Function to multiply two 2x2 matrices

23 function matrix_multiply(A, B) result(C)

24 implicit none

25 real , intent(in) :: A(2, 2), B(2, 2)

26 real :: C(2, 2)

27 integer :: i, j, k

28

29 ! Initialize the result matrix C to zero

30 C = 0.0

31

32 ! Perform matrix multiplication

33 do i = 1, 2

34 do j = 1, 2

35 do k = 1, 2

36 C(i, j) = C(i, j) + A(i, k) * B(k, j)

37 end do

38 end do

39 end do

40 end function matrix_multiply

41

42 ! Subroutine to print a 2x2 matrix

43 subroutine print_matrix(M)

44 implicit none

45 real , intent(in) :: M(2, 2)

46 integer :: i

47

48 do i = 1, 2

49 write(*, ’(F6.2, F6.2)’) M(i, 1), M(i, 2)

50 end do

51 end subroutine print_matrix

52

© 2025 Nitesh Kumar. All rights reserved. 19

Chapter 1. Introduction to FORTRAN 90 on Linux

53 end program matrix_multiplication

1.9 Conclusion

This chapter introduced you to the basics of working with Linux and FORTRAN 90. You
learned how to navigate the Linux file system, write a simple ”Hello, World!” program,
and compile and execute FORTRAN code using the gfortran compiler. In subsequent
chapters, we’ll dive deeper into advanced FORTRAN features such as arrays, file handling,
and scientific computing techniques.

© 2025 Nitesh Kumar. All rights reserved. 20

Chapter 1. Introduction to FORTRAN 90 on Linux

Exercise

Category 1: Easy (Conceptual and Memory-Based)

1. What makes Linux a preferred operating system for scientific computing?

2. Why is FORTRAN still relevant for numerical and scientific applications in the
modern era?

3. What is the primary purpose of the gfortran compiler in FORTRAN program-
ming?

4. Explain the difference between fixed-format and free-format styles in FORTRAN.

5. Why is the IMPLICIT NONE directive critical for error-free programming in FOR-
TRAN?

6. What does the RESHAPE function do in FORTRAN? Provide an example scenario.

7. Define the purpose of modules in FORTRAN. How do they improve code organi-
zation?

8. Why are control structures such as DO loops important for computational tasks?

9. Briefly explain the role of the SELECT CASE statement in FORTRAN programs.

10. How does the Linux nano editor help in writing and editing FORTRAN code?

Category 2: Mid-Level (Understanding-Based)

1. Compare and contrast FORTRAN’s built-in file-handling features with those in
other programming languages.

2. Write a FORTRAN code snippet that reads two real numbers from a file and prints
their sum.

3. How does FORTRAN’s array indexing differ from Python’s? What advantages does
this provide in scientific computing?

4. Write a program to determine whether a given integer is even or odd using FOR-
TRAN.

5. Describe how you would use FORTRAN to simulate the temperature distribution
in a rod (hint: use arrays).

6. Explain how LAPACK can be used to solve a set of linear equations in FORTRAN.
Why is linking external libraries beneficial?

7. Design a FORTRAN program to compute the factorial of a number using recursion.

8. How would you modify a FORTRAN program to store the computed results in a
text file? Provide a pseudocode outline.

© 2025 Nitesh Kumar. All rights reserved. 21

Chapter 1. Introduction to FORTRAN 90 on Linux

9. Describe how you would debug a FORTRAN program using Linux tools like gdb

or compiler flags.

10. Explain the role of logical operators in FORTRAN with an example of their use in
a physical simulation.

Category 3: Application-Based (Flowchart and Coding for
Physics)

1. Write the algorithm and draw a flowchart to compute the determinant of a 3x3
matrix. Implement it in FORTRAN.

2. Create a flowchart and write a FORTRAN program to compute the trajectory of a
projectile given its initial velocity and angle.

3. Develop an algorithm and flowchart for simulating the motion of a harmonic oscil-
lator using Euler’s method.

4. Create a flowchart and program in FORTRAN to calculate the area under a curve
using the trapezoidal rule.

5. Write an algorithm and create a flowchart to compute the orbital velocity of a
planet given its distance from the Sun. Implement the solution in FORTRAN.

6. Create a flowchart and write a FORTRAN program to solve the one-dimensional
heat equation using finite differences.

7. Design a flowchart and write FORTRAN code to compute the discrete Fourier
transform of a signal.

8. Write an algorithm and create a flowchart for calculating the electric field at a point
due to multiple charges in 2D space.

9. Create a flowchart and program in FORTRAN to simulate a 2D random walk for
a particle.

10. Write an algorithm and flowchart to calculate the energy levels of an electron in a
one-dimensional potential well using the Schrödinger equation.

© 2025 Nitesh Kumar. All rights reserved. 22

Chapter 2

Introduction to C++

C++ is a general-purpose programming language created as an extension of C by Bjarne
Stroustrup in the early 1980s. It supports both procedural and object-oriented program-
ming paradigms, making it versatile for systems programming, game development, and
real-time applications.

2.1 Basic Syntax

C++ programs consist of statements that are grouped into functions and classes. The
main function, int main(), is the starting point of any C++ program. Statements in
C++ are terminated by semicolons, and the language is case-sensitive.

2.2 Variables and Data Types

C++ supports several basic data types, such as integers (int), floating-point numbers
(float, double), characters (char), and booleans (bool). Variables are declared by
specifying the type followed by the variable name.

2.3 Control Structures

C++ provides control structures like if-else, switch-case, loops (for, while, and
do-while), and goto statements for controlling the flow of the program.

2.4 Functions

Functions in C++ allow for code reuse and modularization. A function is defined by
specifying a return type, a name, and a list of parameters. The function body is enclosed
in curly braces {}.

2.5 Arrays and Vectors

Arrays in C++ are a collection of elements of the same type. They are declared with a
fixed size and can be single or multi-dimensional. Vectors, from the Standard Template
Library (STL), offer dynamic sizing and more flexibility than arrays.

23

Chapter 2. Introduction to C++

2.6 Object-Oriented Programming (OOP)

C++ is known for its support of object-oriented programming. It introduces the concepts
of classes and objects, inheritance, polymorphism, encapsulation, and abstraction, which
allow for modeling real-world entities in a more intuitive way.

2.7 File Handling

C++ provides file handling mechanisms through the fstream library. You can read from
and write to files using ifstream (input file stream) and ofstream (output file stream).

2.8 Advanced Topics

Advanced features of C++ include templates, exception handling, operator overloading,
and the Standard Template Library (STL) for generic programming. These features
provide flexibility and efficiency in coding.

2.9 Example Programs

2.9.1 Basic syntax

1 #include <iostream >

2 using namespace std;

3

4 int main() {

5 cout << "Hello , World!" << endl;

6 return 0;

7 }

To compile the program, use the following commands:

1 $ g++ hello.cpp -o hello

To run the compiled program, use:

1 $./ hello

Output:

1 Hello , World!

2.9.2 Variables and data types

1 #include <iostream >

2 using namespace std;

3

4 int main() {

5 int i = 10;

6 float f = 3.14;

© 2025 Nitesh Kumar. All rights reserved. 24

Chapter 2. Introduction to C++

7 char c = ’A’;

8 bool b = true;

9

10 cout << "Integer: " << i << endl;

11 cout << "Float: " << f << endl;

12 cout << "Character: " << c << endl;

13 cout << "Boolean: " << b << endl;

14

15 return 0;

16 }

To compile the program, use the following commands:

1 $ g++ variables.cpp -o variables

To run the compiled program, use:

1 $./ variables

Output:

1 Integer: 10

2 Float: 3.14

3 Character: A

4 Boolean: 1

2.9.3 Control structures

1 #include <iostream >

2 using namespace std;

3

4 int main() {

5 int i = 5;

6

7 if (i > 0) {

8 cout << "Positive" << endl;

9 } else {

10 cout << "Negative" << endl;

11 }

12

13 for (int j = 1; j <= 5; j++) {

14 cout << j << endl;

15 }

16 return 0;

17 }

To compile the program, use the following commands:

1 $ g++ control.cpp -o control

To run the compiled program, use:

1 $./ control

© 2025 Nitesh Kumar. All rights reserved. 25

Chapter 2. Introduction to C++

Output:

1 Positive

2 1

3 2

4 3

5 4

6 5

switch case:

1 #include <iostream >

2 using namespace std;

3

4 int main() {

5 int i = 5;

6

7 switch(i) {

8 case 1:

9 cout << "One" << endl;

10 break;

11 case 2:

12 cout << "Two" << endl;

13 break;

14 default:

15 cout << "Other" << endl;

16 }

17

18 return 0;

19 }

To compile the program, use the following commands:

1 $ g++ control_1.cpp -o control_1

To run the compiled program, use:

1 $./ control_1

Output:

1 Other

2.9.4 Arrays and vectors

1 #include <iostream >

2 #include <vector >

3 using namespace std;

4

5 int main() {

6 int arr[3] = {1, 2, 3};

7 vector <int > vec = {1, 2, 3, 4};

© 2025 Nitesh Kumar. All rights reserved. 26

Chapter 2. Introduction to C++

Figure 2.1: Switch case statements

8

9 cout << "Array elements: ";

10 for (int i = 0; i < 3; i++) {

11 cout << arr[i] << " ";

12 }

13 cout << endl;

14

15 cout << "Vector elements: ";

16 for (int i = 0; i < vec.size(); i++) {

17 cout << vec[i] << " ";

18 }

19 cout << endl;

20

21 return 0;

22 }

To compile the program, use the following commands:

1 $ g++ arrays.cpp -o arrays

To run the compiled program, use:

1 $./ arrays

Output:

1 Array elements: 1 2 3

2 Vector elements: 1 2 3 4

© 2025 Nitesh Kumar. All rights reserved. 27

Chapter 2. Introduction to C++

2.9.5 Functions

1 #include <iostream >

2 using namespace std;

3

4 int add(int a, int b) {

5 return a + b;

6 }

7

8 int main() {

9 int x = 5, y = 10;

10 int sum = add(x, y);

11 cout << "Sum: " << sum << endl;

12 return 0;

13 }

To compile the program, use the following commands:

1 $ g++ functions.cpp -o functions

To run the compiled program, use:

1 $./ functions

Output:

1 Sum: 15

2.9.6 File handling

1 // C++ Program to Read a File Line by Line using ifstream

2 #include <fstream >

3 #include <iostream >

4 #include <string >

5

6 using namespace std;

7

8 int main()

9 {

10 // Open the file "abc.txt" for reading

11 ifstream inputFile("abc.txt");

12

13 // Variable to store each line from the file

14 string line;

15

16 // Read each line from the file and print it

17 while (getline(inputFile , line)) {

18 // Process each line as needed

19 cout << line << endl;

20 }

21

22 // Always close the file when done

© 2025 Nitesh Kumar. All rights reserved. 28

Chapter 2. Introduction to C++

23 inputFile.close ();

24

25 return 0;

26 }

To compile the program, use the following commands:

1 $ g++ file_handling.cpp -o file_handling

To run the compiled program, use:

1 $./ file_handling

The example program to write into a file in C++ using ‘ofstream’:

1 #include <iostream >

2 #include <fstream > // Required for file handling

3 using namespace std;

4

5 int main() {

6 // Declare an output file stream (ofstream) object

7 ofstream outputFile;

8

9 // Open a file named "example.txt"

10 outputFile.open("example.txt");

11

12 // Check if the file opened successfully

13 if (! outputFile) {

14 cout << "Error opening file!" << endl;

15 return 1; // Exit the program with an error code

16 }

17

18 // Write data to the file

19 outputFile << "This is a simple example of writing to a file

in C++.\n";

20 outputFile << "File handling is important for many

applications .\n";

21 outputFile << "Learning how to write and read files is

essential !\n";

22

23 // Close the file

24 outputFile.close ();

25

26 // Notify the user

27 cout << "Data successfully written to the file!" << endl;

28

29 return 0;

30 }

2.10 Pointers in C++

A pointer in C++ is a variable that stores the memory address of another variable.
Pointers are widely used in C++ for dynamic memory management, passing parameters

© 2025 Nitesh Kumar. All rights reserved. 29

Chapter 2. Introduction to C++

by reference, and for working with arrays and data structures.

The syntax for declaring a pointer is:

1 type* pointer_name = &var_name;

Here, type refers to the data type that the pointer will point to.

Key operations with pointers:

• Address-of operator (&): Used to get the address of a variable.

• Dereference operator (*): Used to access the value stored at the address the
pointer holds.

2.10.1 Examples

1 // Example 1: Basic pointer usage

2 #include <iostream >

3 using namespace std;

4

5 int main() {

6 int var = 10;

7 int* ptr = &var; // Pointer to var

8

9 cout << "Value of var: " << var << endl;

10 cout << "Address of var: " << &var << endl;

11 cout << "Value stored in ptr (address of var): " << ptr <<

endl;

12 cout << "Dereferencing ptr to get value of var: " << *ptr <<

endl;

13

14 return 0;

15 }

2.11 Arrays in C++

An array in C++ is a collection of elements of the same data type, stored in contiguous
memory locations. Arrays can be accessed using index values starting from 0.

The syntax for declaring an array is:

1 type array_name[size] = {_, _, ...};

Important properties of arrays:

• Arrays can store multiple values in a single variable.

• The elements in an array are stored in contiguous memory locations.

• Arrays can be passed to functions by reference, meaning the memory address of the
first element is passed.

© 2025 Nitesh Kumar. All rights reserved. 30

Chapter 2. Introduction to C++

2.11.1 Examples

1 // Example 2: Working with arrays

2 #include <iostream >

3 using namespace std;

4

5 int main() {

6 int arr[5] = {1, 2, 3, 4, 5};

7

8 // Accessing array elements using indices

9 cout << "First element: " << arr [0] << endl;

10 cout << "Third element: " << arr [2] << endl;

11

12 // Using a loop to print all elements

13 for(int i = 0; i < 5; i++) {

14 cout << "Element at index " << i << ": " << arr[i] <<

endl;

15 }

16

17 return 0;

18 }

2.12 Pointers and Arrays

In C++, arrays and pointers are closely related. The name of an array acts as a pointer
to the first element of the array. This allows for pointer arithmetic and manipulation of
array elements via pointers.

2.12.1 Examples

1 // Example 3: Pointers and arrays

2 #include <iostream >

3 using namespace std;

4

5 int main() {

6 int arr[3] = {10, 20, 30};

7 int* ptr = arr; // ptr points to the first element of the

array

8

9 // Accessing array elements via pointer

10 for (int i = 0; i < 3; i++) {

11 cout << "Element " << i << ": " << arr[i] << endl;

12 cout << "Element " << i << ": " << *(ptr + i) << endl;

13 }

14

15 return 0;

16 }

© 2025 Nitesh Kumar. All rights reserved. 31

Chapter 2. Introduction to C++

2.13 Dynamic list Example

In this example, we need to manage the scores of a class of students. Since the number of
students is unknown at compile-time, we will use dynamic memory allocation to create
an array to store their scores at runtime. This demonstrates how pointers are used in
dynamic memory management.

1 // Example: Managing a dynamic list of student scores

2 #include <iostream >

3 using namespace std;

4

5 int main() {

6 int numStudents;

7

8 // Asking the user for the number of students

9 cout << "Enter the number of students: ";

10 cin >> numStudents;

11

12 // Dynamically allocating an array to store student scores

13 float* scores = new float[numStudents];

14

15 // Taking input for student scores

16 for(int i = 0; i < numStudents; ++i) {

17 cout << "Enter score for student " << i+1 << ": ";

18 cin >> scores[i];

19 }

20

21 // Calculating the average score

22 float sum = 0;

23 for(int i = 0; i < numStudents; ++i) {

24 sum += scores[i];

25 }

26 float average = sum / numStudents;

27

28 // Displaying the average score

29 cout << "Average score: " << average << endl;

30

31 // Freeing the dynamically allocated memory

32 delete [] scores;

33

34 return 0;

35 }

2.13.1 Explanation

In this program, the number of students is provided by the user at runtime. The program
dynamically allocates memory for the student scores using a pointer. The key steps are
as follows:

• Dynamic Memory Allocation: new float[numStudents] allocates memory for
an array of floats based on the number of students entered by the user. This is useful

© 2025 Nitesh Kumar. All rights reserved. 32

Chapter 2. Introduction to C++

when the size of data is not known during compile-time.

• Pointer Usage: The pointer scores stores the address of the first element of the
dynamically allocated array. The notation scores[i] is used to access the array
elements. This is equivalent to *(scores + i), where pointer arithmetic is applied
to traverse the memory.

• Memory Deallocation: The program uses delete[] to free the dynamically
allocated memory after it is no longer needed, preventing memory leaks.

2.14 Significance of Using Pointers

Pointers in C++ are crucial for dynamic memory management, which provides several
benefits in real-world applications:

• Efficient Memory Usage: Pointers allow for dynamic allocation of memory,
meaning we can allocate memory based on actual needs at runtime. This avoids
wastage of memory that occurs when arrays are declared with a fixed size at compile-
time.

• Flexibility: Since the size of the array is determined at runtime, the program can
handle variable amounts of data. This is particularly important when dealing with
user input or data that fluctuates during program execution.

• Performance: Pointers can directly access and manipulate memory, making them
more efficient in scenarios where performance is critical, such as handling large
datasets, network buffers, or game engines.

• Dynamic Data Structures: Many advanced data structures like linked lists,
trees, and graphs rely on pointers to manage memory and relationships between
elements. These structures are widely used in algorithm design and systems pro-
gramming.

© 2025 Nitesh Kumar. All rights reserved. 33

Chapter 2. Introduction to C++

Exercise

Category 1: Easy (Conceptual and Memory-Based)

1. What are the main features of C++ that make it suitable for systems programming
and real-time applications?

2. Briefly explain the difference between procedural programming and object-oriented
programming.

3. What is the purpose of the int main() function in a C++ program?

4. List the basic data types in C++ and provide an example of how to declare each.

5. What is the significance of the #include directive in C++?

6. Why is the semicolon (;) important in C++? Provide an example of its usage.

7. What is the difference between an array and a vector in C++?

8. Describe the role of the Standard Template Library (STL) in C++.

9. What are the key features of object-oriented programming supported by C++?

10. Explain the importance of the fstream library in C++ file handling.

Category 2: Mid-Level (Understanding-Based)

1. Write a simple C++ program to print the Fibonacci sequence up to n terms, where
n is input by the user.

2. Describe how a switch-case statement works in C++. Provide an example of its
usage.

3. Compare and contrast for, while, and do-while loops in C++.

4. Write a C++ function to calculate the factorial of a number using recursion.

5. How do pointers work in C++? Write a program to demonstrate the use of pointers
to access and modify an integer variable.

6. Explain how to dynamically allocate and deallocate memory for an array in C++
using pointers.

7. Describe the difference between ifstream and ofstream. Provide an example of
each.

8. Write a program to demonstrate the usage of vectors in C++ for storing and ma-
nipulating a list of integers.

9. How does operator overloading work in C++? Write a program to overload the +

operator for adding two complex numbers.

10. Explain the use of templates in C++ with an example of a function template for
swapping two variables.

© 2025 Nitesh Kumar. All rights reserved. 34

Chapter 2. Introduction to C++

Category 3: Application-Based (Flowchart and Coding)

1. Write the algorithm and draw a flowchart to compute the roots of a quadratic
equation using the quadratic formula. Implement it in C++.

2. Create a flowchart and write a program to simulate the motion of a pendulum using
simple harmonic motion equations.

3. Develop an algorithm and flowchart to compute the dot product of two vectors.
Implement the solution in C++.

4. Create a flowchart and program to simulate the motion of a projectile given initial
velocity and angle of projection.

5. Write a program to solve a system of linear equations using matrices and Gaussian
elimination. Provide the algorithm and flowchart.

6. Develop an algorithm and flowchart to compute the numerical integration of a
function using Simpson’s rule. Write the corresponding C++ code.

7. Write the algorithm and create a flowchart to calculate the electric field at a point
due to multiple charges in 2D space. Implement it in C++.

8. Design a flowchart and write a C++ program to simulate a simple 2D random walk
of a particle.

9. Create an algorithm and flowchart for managing a dynamic list of student scores,
including input, average calculation, and memory deallocation. Implement it in
C++.

10. Write an algorithm and flowchart for generating the first n terms of a geometric
progression, then implement the program in C++.

© 2025 Nitesh Kumar. All rights reserved. 35

Chapter 2. Introduction to C++

© 2025 Nitesh Kumar. All rights reserved. 36

Chapter 3

Introduction to Gnuplot

3.1 Overview

Gnuplot is a portable command-line driven graphing utility for visualizing mathematical
functions and data. It supports various types of plots in both 2D and 3D and can output
to multiple formats, including PNG, PDF, SVG, and LaTeX. Gnuplot is widely used for
its flexibility and ability to produce publication-quality graphics.

3.2 Getting Started with Gnuplot

To begin using Gnuplot, ensure it is installed on your system. You can download it from
the official website: http://www.gnuplot.info/. After installation, launch the Gnuplot
command-line interface by typing gnuplot in your terminal.

3.3 Plotting Mathematical Functions

Gnuplot allows for straightforward plotting of mathematical functions. For example, to
plot the sine function:

1 gnuplot > plot sin(x)

This command will display a 2D plot of sin(x) over a default range. To specify a
range for the x-axis:

1 gnuplot > plot [-10:10] sin(x)

3.4 Plotting Data from Files

Gnuplot can plot data from files where data is organized in columns. Consider a data file
named data.dat with the following content:

1 # X Y

2 1 2

3 2 4

4 3 6

5 4 8

37

http://www.gnuplot.info/

Chapter 3. Introduction to Gnuplot

6 5 10

To plot this data:

1 gnuplot > plot ’data.dat’ using 1:2 with linespoints

This command tells Gnuplot to plot the first column as the x-axis and the second
column as the y-axis, using lines and points to represent the data.

3.5 Customizing Plots

Gnuplot offers various customization options:
- Titles and Labels Add titles and axis labels to your plot.

1 gnuplot > set title "Sample Data Plot"

2 gnuplot > set xlabel "X-axis"

3 gnuplot > set ylabel "Y-axis"

4

- Grid and Key (Legend) Enable grid lines and position the legend.

1 gnuplot > set grid

2 gnuplot > set key right top

3

- Output to Files Save plots to files in various formats.

1 gnuplot > set terminal png

2 gnuplot > set output ’plot.png’

3 gnuplot > replot

4 gnuplot > set output

5

3.6 Examples

Example 1: Plotting Multiple Functions

To plot multiple functions on the same graph:

1 gnuplot > plot sin(x) title ‘sin(x)‘, cos(x) title ‘cos(x)’

This command plots both sin(x) and cos(x) with respective titles.

Example 2: 3D Plotting

Gnuplot can create 3D plots using the splot command:

1 gnuplot > set hidden3d

2 gnuplot > splot sin(x)*cos(y) title ‘sin(x)cos(y)’

This will render a 3D surface plot of the function sin(x) cos(y).

© 2025 Nitesh Kumar. All rights reserved. 38

Chapter 3. Introduction to Gnuplot

Example 3: Plotting Data with Error Bars

If your data file data with errors.dat includes errors:

1 # X Y Y_Error

2 1 2 0.1

3 2 4 0.2

4 3 6 0.1

5 4 8 0.3

6 5 10 0.2

Plot with error bars using:

1 gnuplot > plot "data_with_errors.dat" using 1:2:3 with yerrorbars

This command plots the data points with vertical error bars.

© 2025 Nitesh Kumar. All rights reserved. 39

Chapter 3. Introduction to Gnuplot

Exercises

Category 1: Easy (Conceptual and Memory-Based)

1. What is Gnuplot, and what are its primary uses?

2. List three types of plots that Gnuplot can generate.

3. How can you set the title of a plot in Gnuplot?

4. Describe the purpose of the set xlabel and set ylabel commands.

5. What command is used to plot a mathematical function in Gnuplot?

Category 2: Mid-Level (Understanding-Based)

1. Explain how to plot data from a file in Gnuplot. What does the using keyword
specify?

2. How can you customize the range of the x-axis and y-axis in a plot?

3. Describe the steps to save a plot as a PNG file.

4. What is the difference between the plot and splot commands?

5. How can you add a legend to your plot, and where can it be positioned?

Category 3: Application-Based

1. Create a Gnuplot script to plot the function f(x) = e−x2
over the range [−2 : 2].

2. Given a data file experiment.dat with three columns (time, measurement, error),
write a Gnuplot command to plot the measurements with error bars.

3. Write a Gnuplot script to generate a 3D surface plot of z = sin(x)× cos(y).

4. How would you modify the appearance of the plot to use lines instead of points for
data visualization?

5. Develop a Gnuplot script to plot multiple datasets from different files on the same
graph, each with a distinct style and title.

© 2025 Nitesh Kumar. All rights reserved. 40

Chapter 4

Introduction to LATEX

4.1 Introduction to LATEX

LATEX is a powerful typesetting system extensively used in academia, especially for sci-
entific documents that involve complex mathematical equations, figures, and references.
It allows users to focus on the content while managing the formatting and layout effi-
ciently. Unlike WYSIWYG (what you see is what you get) editors like Microsoft Word,
LATEX operates using plain text markup, which means you define structure and style using
commands.

Key features of LATEX include:

• Precise control over document formatting.

• Easy management of bibliographies, references, and citations.

• Automatic numbering and cross-referencing.

• Superior handling of mathematical formulas.

This document will guide you through the basics of LATEX and demonstrate how to
create well-structured documents with high-quality formatting.

4.2 Getting Started with LATEX

4.2.1 Installing LATEX

LATEX is available on most platforms:

1. Windows: Use MikTeX or TeX Live.

2. Mac: Install MacTeX.

3. Linux: Install via package managers, e.g., sudo apt-get install texlive-full.

Popular editors:

• TeXworks (included with MikTeX).

• Overleaf (online collaborative LATEX editor).

• Texmaker or VS Code with LATEX plugins.

41

Chapter 4. Introduction to LATEX

4.2.2 First LATEX Document

A typical LATEX document contains a preamble and a body. Below is an example of a
basic document:

LaTeX Code:

1 \documentclass{article}

2 \usepackage[utf8]{ inputenc}

3

4 \title{My First Document}

5 \author{John Doe}

6 \date{\ today}

7

8 \begin{document}

9 \maketitle

10

11 Hello , this is my first

document created with \

LaTeX.

12 \end{document}

13

Output:

My First Document

John Doe

January 23, 2025

Hello, this is my first document
created with LATEX.

To compile this, run pdflatex and a PDF will be generated.

4.3 The Preamble and Body of a LATEX Document

A LATEX document consists of two main parts: the preamble and the body.

4.3.1 The Preamble

The preamble is the part of the document before the \begin{document} command. It is
used to set up the overall structure and formatting of the document. Key components of
the preamble include:

• \documentclass{...}: This command defines the type of document you are writ-
ing (e.g., article, report, book, etc.). You can also pass options to modify the
appearance of the document, such as font size or paper size:

1 \documentclass [12pt , a4paper]{ article}

2

• \usepackage{...}: This command imports additional packages to enhance the
functionality of your document. For example, to support UTF-8 character encoding
or to add mathematical capabilities:

1 \usepackage[utf8]{ inputenc}

2 \usepackage{amsmath}

3

• Title information commands:

© 2025 Nitesh Kumar. All rights reserved. 42

Chapter 4. Introduction to LATEX

– \title{...}: Sets the document title.

– \author{...}: Sets the author’s name.

– \date{...}: Sets the date. You can use \today to automatically insert the
current date.

These settings are later used when the \maketitle command is called in the body
of the document.

4.3.2 The Body

The body of the document begins after the \begin{document} command. This is where
the actual content of your document is written. You can include sections, text, lists,
tables, figures, equations, and other elements. Here is an example of a simple document
body:

1 \begin{document}

2 \maketitle

3

4 This is the body of the document. You can add sections like this:

5 \section{Introduction}

6 This is an introduction to my document.

7

8 You can also include mathematical equations , figures , and tables

here.

9 \end{document}

The body ends with the \end{document} command, which signals the end of the
document.

4.4 Document Structure

4.4.1 Basic Structure

A LATEX document is organized using sections, subsections, and paragraphs. Here’s a
quick example:

LaTeX Code:

1 \section{Introduction}

2 This is the introduction.

3

4 \subsection{Background}

5 This is the background.

6

7 \subsubsection{Details}

8 Further details go here.

9

10 \paragraph{Note} This is a

note.

11

Output:

1. Introduction

This is the introduction.

1.1 Background

This is the background.

1.1.1 Details

Further details go here.

Note This is a note.

© 2025 Nitesh Kumar. All rights reserved. 43

Chapter 4. Introduction to LATEX

4.4.2 Lists

Unordered List:

1 \begin{itemize}

2 \item First item

3 \item Second item

4 \end{itemize}

Output:

• First item

• Second item

Ordered List:

1 \begin{enumerate}

2 \item First item

3 \item Second item

4 \end{enumerate}

Output:

1. First item

2. Second item

4.5 Mathematical Typesetting

4.5.1 Inline Math

Inline math is simple to include. For example, the equation of a line can be written as
follows:

1 The equation of a line is $y = mx + c$.

Output:

The equation of a line is y = mx+ c.

4.5.2 Displayed Equations

For more complex math that needs its own line, use displayed math:

1

2 $$ E = mc^2 $$

Output:

E = mc2

© 2025 Nitesh Kumar. All rights reserved. 44

Chapter 4. Introduction to LATEX

4.5.3 Complex Equations

Integrals can be written as:

1 $$ \int_a^b f(x) dx $$

Output:

∫ b

a

f(x)dx

For more advanced math, use the amsmath package:

1 \documentclass{article}

2 \usepackage{amsmath}

3 % other packages in preamble

4

5 \begin{document}

6

7 % Your code

8

9

10 \end{document}

The amsmath package allows for advanced mathematical formatting. After including
this package, you can use environments like align, gather, and more.

Complex Equations Using the align Environment

align: The align environment is used for aligning equations at the equal sign or other
relation symbols:

LaTeX Code:

1 \begin{align}

2 \int _0^{\ infty} e^{-x} \, dx &= 1 \\

3 \frac{d}{dx}(x^2) &= 2x \\

4 \lim_{x \to 0} \frac{\sin x}{x} &= 1 \\

5 e^{i\pi} + 1 &= 0

6 \end{align}

Output:∫ ∞

0

e−x dx = 1 (4.1)

d

dx
(x2) = 2x (4.2)

lim
x→0

sinx

x
= 1 (4.3)

eiπ + 1 = 0 (4.4)

© 2025 Nitesh Kumar. All rights reserved. 45

Chapter 4. Introduction to LATEX

Complex Equations Using the gather Environment

The following equations include integrals, differentiation, and other mathematical sym-
bols:

1 \begin{gather}

2 \int_{a}^{b} f(x) \, dx = F(b) - F(a) \\

3 \frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = 0 \\

4 \sum_{n=1}^{\ infty} \frac {1}{n^2} = \frac{\pi ^2}{6} \\

5 \sqrt{a^2 + b^2} = c

6 \end{gather}

Output:∫ b

a

f(x) dx = F (b)− F (a) (4.5)

d2y

dx2
+ p

dy

dx
+ qy = 0 (4.6)

∞∑
n=1

1

n2
=

π2

6
(4.7)

√
a2 + b2 = c (4.8)

4.6 Figures and Tables

4.6.1 Inserting Figures

To include images in your LaTeX document, you need to use the graphicx package,
which provides commands for handling graphics and images.

Include the graphicx Package

First, ensure you have the following line in the preamble of your document:

1 \usepackage{graphicx}

Inserting a Figure

To insert a figure, you use the figure environment. Below is the basic syntax:

1 \begin{figure }[h!]

2 \centering

3 \includegraphics[width =0.75\ textwidth]{image.png}

4 \caption{Sample Image}

5 \label{fig:image1}

6 \end{figure}

• Figure Environment: The figure environment is a floating container for figures,
which allows LaTeX to place the figure at an optimal location in the document. The

© 2025 Nitesh Kumar. All rights reserved. 46

Chapter 4. Introduction to LATEX

optional argument [h!] suggests that LaTeX should place the figure “here,” but
it can be overridden to maintain document flow.

• \centering: This command centers the figure within the figure environment.

• \includegraphics: This command is used to include the actual image file. The
width parameter can be specified as a relative value (e.g., 0.75\textwidth to make
the image three quarter the width of the text area) or as an absolute dimension.

• \caption: This command provides a caption for the figure that appears below the
image, helping to explain or describe it.

• \label: This command creates a reference label for the figure, allowing you to refer
to it elsewhere in your document using \ref{fig:image1}.

Output:

Figure 4.1: UPES

We can refer Figure 4.1 anywhere in the document using it’s label.

Important Notes

• Make sure that the image file (e.g., image.png) is in the same directory as your
.tex file for it to be displayed correctly.

• Adjust the width parameter as needed to fit your document layout.

• The figure environment allows LaTeX to manage the placement of the image,
which might not always be exactly where you placed the code, depending on the
surrounding content. Use placement options like [h!], [t], [b], or combinations
to suggest preferred placement.

4.6.2 Tables

Tables can be created using the tabular environment, which provides a flexible way to
arrange data in rows and columns. The structure of a table is defined using a combination
of alignment specifiers, formatting commands, and optional features.

© 2025 Nitesh Kumar. All rights reserved. 47

Chapter 4. Introduction to LATEX

Basic Structure

The basic structure of a table consists of the following components: - The table environ-
ment, which allows for the placement of the table in a floating manner. - The tabular

environment, which defines the actual content of the table.
Here is an example of a simple table:

1 \begin{table }[h!]

2 \centering

3 \begin{tabular }{|c|c|c|}

4 \hline

5 A & B & C \\

6 \hline

7 1 & 2 & 3 \\

8 4 & 5 & 6 \\

9 \hline

10 \end{tabular}

11 \caption{Sample Table}

12 \label{tab:table1}

13 \end{table}

Output:

A B C
1 2 3
4 5 6

Table 4.1: Sample Table

Components of the Table Example

• table[h!]: This environment wraps the table and allows it to float in the document.
The optional argument [h!] suggests placing the table ”here” if possible.

• \centering: Centers the table on the page.

• tabular{|c|c|c|}: This command defines the table structure. The | character adds
vertical lines between the columns, and c denotes center alignment for each column.
You can also use l for left alignment and r for right alignment.

• \hline: Inserts a horizontal line in the table, creating a clear separation between
rows.

• A & B & C \\: This line specifies the first row of the table. The ampersand &

separates the columns, and the double backslash \\ indicates the end of the row.

• \caption{Sample Table}: Provides a caption for the table that appears above or
below the table, depending on the document class and settings.

• \label{tab:table1}: This command creates a reference label for the table, allow-
ing you to refer to it elsewhere in the document using \ref{tab:table1}.

© 2025 Nitesh Kumar. All rights reserved. 48

Chapter 4. Introduction to LATEX

Customizing Tables

You can customize tables in several ways:

1. Changing Column Widths: You can adjust the width of columns using the
pwidth specifier instead of c, l, or r. For example, p3cm sets a fixed width for a
column:

1 \begin{tabular }{|p{3cm}|p{3cm}|p{3cm}|}

2 \hline

3 Long text in a column & Another column & More text \\

4 \hline

5 \end{tabular}

6

Output:

Long text in a
column

Another column More text

Table 4.2: My Caption

2. Merging Cells: To merge cells horizontally, you can use the \multirow or \multicolumn
commands from the multirow package. Example of merging two columns:

1 \usepackage{multirow} % IN PREAMBLE (BEFORE \begin{document })

2

3 \begin{table }[!h]

4 \centering

5 \begin{tabular }{|c|c|}

6 \hline

7 \multicolumn {2}{|c|}{ Merged Cell} \\

8 \hline

9 1 & 2 \\

10 3 & 4 \\

11 \hline

12 \end{tabular}

13 \caption{Merged cells table}

14 \label{tab:my_label _2}

15 \end{table}

16

Output:

Merged Cell
1 2
3 4

Table 4.3: Merged cells table

3. Adding Borders and Color: You can enhance the appearance of tables using
the booktabs package, which provides commands like \toprule, \midrule, and
\bottomrule for cleaner horizontal lines:

© 2025 Nitesh Kumar. All rights reserved. 49

Chapter 4. Introduction to LATEX

1 \usepackage{booktabs} % IN PREAMBLE (BEFORE \begin{document })

2

3 \begin{table }[!h]

4 \centering

5 \caption{Tables using booktabs .}

6 \begin{tabular }{ccc}

7 \toprule

8 A & B & C \\

9 \midrule

10 1 & 2 & 3 \\

11 4 & 5 & 6 \\

12 \bottomrule

13 \end{tabular}

14 \label{tab:my_label _3}

15 \end{table}

16

17

Output:

Table 4.4: Tables using booktabs.

A B C

1 2 3
4 5 6

Example of a More Complex Table

Here’s a more complex example that includes merged cells and custom widths:

1 \begin{table }[h!]

2 \centering

3 \begin{tabular }{|p{4cm}|p{4cm}|c|}

4 \hline

5 \multicolumn {2}{|c|}{ Combined Columns} & Single Column \\

6 \hline

7 Item 1 & Item 2 & Item 3 \\

8 \hline

9 \end{tabular}

10 \caption{Complex Table Example}

11 \label{tab:complex_table}

12 \end{table}

Output:

Combined Columns Single Column
Item 1 Item 2 Item 3

Table 4.5: Complex Table Example

© 2025 Nitesh Kumar. All rights reserved. 50

Chapter 4. Introduction to LATEX

4.7 Cross-referencing and Bibliography

LATEX provides powerful tools for cross-referencing and managing bibliographies. These
features are particularly useful in larger documents like academic papers, theses, or re-
ports, where you often need to refer to figures, tables, sections, or external references.

4.7.1 Cross-referencing

Cross-referencing in LATEX allows you to refer to sections, figures, tables, equations,
and more, without hardcoding specific numbers. This way, if your document structure
changes, all references update automatically.

To set up a cross-reference, you use the \label command to mark a specific element,
and then use \ref or \pageref to refer back to that element.

Cross-referencing Sections

For referencing sections, you can place the \label command immediately after the section
heading. Here’s an example:

1 \section{Introduction }\label{sec:intro}

2

3 This is the introduction to the paper.

4

5 \section{Methodology }\label{sec:method}

6

7 As discussed in Section \ref{sec:intro}, the problem is defined

...

Expected Output
As discussed in Section 1, the problem is defined...

Here, \ref{sec:intro} automatically inserts the section number (“1” in this case)
into the text. If the order of sections changes, the reference will update to reflect the new
numbering.

Cross-referencing Figures and Tables

Cross-referencing is also helpful for figures and tables. Here’s an example for referencing
a figure:

1 \begin{figure }[h!]

2 \centering

3 \includegraphics[width =0.5\ textwidth]{example -image}

4 \caption{An example image .}

5 \label{fig:image1}

6 \end{figure}

7

8 As shown in Figure \ref{fig:image1}, the result is clear.

Expected Output
As shown in Figure 1, the result is clear.

© 2025 Nitesh Kumar. All rights reserved. 51

Chapter 4. Introduction to LATEX

In this case, the \label command inside the figure environment allows you to refer-
ence it using \ref{fig:image1}. The output will insert the figure number (”1” in this
case) automatically.

You can similarly cross-reference tables by labeling them within the table environment:

1 \begin{table }[h!]

2 \centering

3 \begin{tabular }{|c|c|}

4 \hline

5 Item & Description \\

6 \hline

7 A & Example A \\

8 B & Example B \\

9 \hline

10 \end{tabular}

11 \caption{Example Table .}

12 \label{tab:example}

13 \end{table}

14

15 Table \ref{tab:example} shows the details of items.

Expected Output
Table 1 shows the details of items.

Cross-referencing Pages

To refer to the page where an element appears, use the \pageref command. This is
useful for long documents where you want to direct readers to the exact page of a figure,
table, or section:

1 Figure \ref{fig:image1} is found on page \pageref{fig:image 1}.

Expected Output
Figure 1 is found on page 2.

This command inserts the page number of the referenced element.

4.7.2 Bibliography

LATEX is widely used in academic writing due to its excellent citation and bibliography
management. LATEX works with tools like BibTeX and BibLaTeX to handle references
efficiently. BibTeX allows you to manage and format bibliographic data separately, while
BibLaTeX provides more flexibility and modern features.

Basic Bibliography Using BibTeX

To use BibTeX, create a ‘.bib‘ file containing your references. In the main LATEX file,
include the following commands to generate the bibliography:

1 \bibliographystyle{plain}

2 \bibliography{references}

© 2025 Nitesh Kumar. All rights reserved. 52

Chapter 4. Introduction to LATEX

Here, plain is the style of the bibliography, and references is the name of your
bibliography file (e.g., references.bib).

Your .bib file might look like this:

1 @book{lamport 1994 latex ,

2 title ={LaTeX: A Document Preparation System},

3 author ={Lamport , Leslie},

4 year ={1994} ,

5 publisher ={Addison -Wesley}

6 }

7

8 @article{knuth 1984 texbook ,

9 title ={The TeXbook},

10 author ={Knuth , Donald},

11 journal ={ Computers \& Typesetting},

12 volume ={A},

13 year ={1984} ,

14 publisher ={Addison -Wesley}

15 }

When compiling your document, BibTeX automatically formats and adds the references
at the end of your document. Citations can be added using the \cite command:

1 According to \cite{lamport 1994 latex}, \LaTeX {} is a powerful tool

for document preparation.

Expected Output

According to [1], LaTeX is a powerful tool for document preparation.

At the end of your document, BibTeX generates the bibliography:

References

[1] Lamport, Leslie. LaTeX: A Document Preparation System. Addison-Wesley, 1994.

[2] Knuth, Donald. The TeXbook. Addison-Wesley, 1984.

Bibliography Using BibLaTeX

BibLaTeX is an advanced package for managing citations and bibliographies. To use it,
load the package and specify the backend (e.g., biber):

1 \usepackage[backend=biber ,style=numeric]{ biblatex}

2 \addbibresource{references.bib}

This setup allows for more flexible citation styles, including numeric, alphabetic, author-
year, and more. You can then cite sources using the \cite command just like in BibTeX:

1 \cite{knuth 1984 texbook}

At the end of the document, print the bibliography using:

1 \printbibliography

© 2025 Nitesh Kumar. All rights reserved. 53

Chapter 4. Introduction to LATEX

Citation Styles

Both BibTeX and BibLaTeX offer various citation styles. Common ones include:

• plain: Simple numbered style.

• alpha: Citations are based on authors’ initials and publication year.

• ieeetr: IEEE citation style, commonly used in technical and engineering fields.

• apalike: APA-style citations, widely used in social sciences.

For example, to use the APA-like citation style:

1 \bibliographystyle{apalike}

Or, with BibLaTeX:

1 \usepackage[style=apa]{ biblatex}

These commands will automatically format your citations and bibliography according to
the selected style.

4.8 Customizing LATEX Documents

Customization in LATEX allows you to modify the appearance of your document to meet
various formatting requirements. In this section, we’ll cover some essential aspects of
page layout, fonts, and text styles, all of which can be easily adjusted to suit your needs.

4.8.1 Page Layout

The page layout in a LATEX document, such as paper size, margins, and orientation, can
be customized using the geometry package. This package provides flexibility in adjusting
the dimensions of the page to fit specific formatting needs.

To change the paper size and margins, you can specify options directly when loading
the geometry package. Here’s an example for setting A4 paper size and 1-inch margins:

1 \usepackage[a4paper , margin =1in]{ geometry}

Customizing Margins

You can also specify custom margins for different sides of the page. For example, to set a
2-inch top margin, 1-inch bottom margin, 1.5-inch left margin, and 1-inch right margin,
use:

1 \usepackage[top=2in, bottom =1in, left =1.5in, right =1in]{ geometry}

© 2025 Nitesh Kumar. All rights reserved. 54

Chapter 4. Introduction to LATEX

Changing Paper Size and Orientation

To change the paper size to legal (8.5 x 14 inches) and make it landscape oriented, you
can modify the options as follows:

1 \usepackage[legalpaper , landscape , margin =1in]{ geometry}

Output: The page will be oriented horizontally (landscape) on legal-sized paper with
1-inch margins.

These changes will apply globally across the entire document unless you specify oth-
erwise.

4.8.2 Font and Style

Font customization in LATEX is managed by various packages, such as fontenc for en-
coding and inputenc for character sets. Changing fonts and text styles can improve
readability and give your document a personalized look.

Font Encoding

Using the fontenc package ensures that fonts are properly encoded. For example, to
enable T1 encoding, which allows for proper hyphenation and accented characters, use:

1 \usepackage[T1]{ fontenc}

T1 encoding is essential when working with European languages or documents requir-
ing accented characters.

Changing Fonts

You can change the font family to one of LATEX’s default font families, such as serif,
sans-serif, or monospace, using the following commands:

1 \renewcommand {\ familydefault }{\ sfdefault} % Sans -serif as

default

To use a specific font, such as the popular Times New Roman, you can load the corre-
sponding package:

1 \usepackage{times} % Times New Roman

Output:
The entire document’s font will switch to Times New Roman.
Other common font packages include:

1. helvet for Helvetica (sans-serif)

2. courier for Courier (monospace)

Text Styles

In LATEX, text styles such as bold, italic, and underlined text are easily applied using the
following commands:

1. Bold Text: Use \textbf{...} to make text bold.

© 2025 Nitesh Kumar. All rights reserved. 55

Chapter 4. Introduction to LATEX

1 This is \textbf{bold text}.

Output:

This is bold text.

2. Italic Text: Use \textit{...} to italicize text.

1 This is \textit{italic text}.

2

Output:

This is italic text.

3. Underlined Text: While LATEX doesn’t have a direct underline command, you
can use the ulem package to underline text:

1 \usepackage{ulem}

2 This is \uline{underlined text}.

3

Output:

This is underlined text.

Alternatively, for a simpler underlining solution, you can use the underline com-
mand from standard LATEX:

1 This is \underline{underlined text}.

2

Customizing Font Sizes

Font size can be adjusted globally or locally within the document. To set the font size
for the entire document, modify the document class as follows:

1 \documentclass [12pt]{ article}

This will set the default font size to 12 points.
For local font size adjustments, use the following commands within the document:

• \tiny: Very small text

• \scriptsize: Smaller than small

• \footnotesize: Slightly larger than scriptsize

• \small: Small text

• \large: Slightly larger text

• \Large, \LARGE: Progressively larger text

• \huge, \Huge: Very large text

© 2025 Nitesh Kumar. All rights reserved. 56

Chapter 4. Introduction to LATEX

Example:

1 This is \tiny{tiny text}, and this is \Huge{huge text}.

Output:

This is tiny text, and this is huge text.
By combining these commands, you can customize the look and feel of your document,

ensuring it matches specific formatting guidelines or personal preferences.

4.8.3 Color and Highlighting

In LATEX, the xcolor package is commonly used to apply colors to text and other elements.
You can highlight important sections, change font colors, and even define your own custom
colors.

To load the xcolor package:

1 \usepackage{xcolor}

Changing Text Color

To change the color of specific text, use the \textcolor command. Here’s an example
that sets the text color to red:

1 This is \textcolor{red}{red text}.

Output:
This is red text.

Highlighting Text

You can also highlight text with a background color using the \colorbox command:

1 \colorbox{yellow }{This text is highlighted in yellow .}

Output:
This text is highlighted in yellow.
Customizing LATEX documents provides a great deal of flexibility in terms of page

layout, fonts, text styles, and colors. Using the geometry package, you can control
the page dimensions and margins. Text appearance can be easily managed with font
encodings, font family selection, and local style adjustments like bold, italics, and color.
Together, these tools allow you to craft a professional and visually appealing document.

4.9 Error Handling and Debugging

When working with LATEX, errors can arise during the compilation process. Understand-
ing common error messages and how to resolve them is essential for smooth document
preparation. LATEX editors, such as Overleaf, TeXShop, or TeXworks, provide detailed
logs that can help you trace and fix errors.

In this section, we’ll look at common errors, their causes, and strategies for debugging.

© 2025 Nitesh Kumar. All rights reserved. 57

Chapter 4. Introduction to LATEX

4.9.1 Common LATEX Errors

Here are some of the most common errors you might encounter when compiling a LATEX
document:

Missing or Mismatched Braces

One of the most frequent errors is missing or unmatched braces (i.e., {...}). Every
opening brace { must have a corresponding closing brace }.

Example Error:

1 This is an \textbf{example of missing brace.

The error message may look like this:

! LaTeX Error: \textbf on input line 1 ended by \end{document}.

Solution: Ensure that every { has a matching }. The correct syntax is:

1 This is an \textbf{example of correct brace}.

If you’re dealing with nested braces, carefully check that each pair is properly closed.

Undefined References

Undefined references occur when you try to reference a section, figure, table, or citation
that has not been labeled correctly or is missing entirely. You will see a warning like this
during compilation:

LaTeX Warning: There were undefined references.

Example Error:

1 As shown in Figure \ref{fig:missing}, the results are clear.

If no figure with the label fig:missing exists, you’ll get an error.

Solution: Ensure that you have labeled the element you’re referencing. For example:

1 \begin{figure }[h!]

2 \includegraphics[width =0.5\ textwidth]{example -image}

3 \caption{An example image .}

4 \label{fig:image1}

5 \end{figure}

6

7 As shown in Figure \ref{fig:image1}, the results are clear.

Also, make sure to run multiple compilation steps (e.g., in Overleaf, press ”Recompile”
twice) to resolve cross-references.

© 2025 Nitesh Kumar. All rights reserved. 58

Chapter 4. Introduction to LATEX

Package Errors

Using incorrect or incompatible packages can lead to compilation errors. This happens
if a required package is missing from your LATEX installation or if two packages conflict
with each other.

Example Error: If you try to load a non-existent package:

1 \usepackage{nonexistent}

You will see an error message like this:

! LaTeX Error: File ‘nonexistent.sty’ not found.

Solution: Ensure that the package you’re trying to use is installed or available in your
LATEX distribution. For example, replace it with a valid package:

1 \usepackage{graphicx} % A valid package

For package conflicts, try commenting out one of the conflicting packages or look for
a compatible alternative.

4.9.2 Debugging Tips

Here are some strategies to debug your LATEX documents effectively:

Read the Log File

Most LATEX editors provide a detailed log file that lists all warnings and errors encountered
during compilation. This log can help pinpoint the exact line where the error occurred.
The log will often include the following types of messages:

• Error messages: These are critical and stop the compilation.

• Warnings: These indicate potential issues but do not stop the compilation.

• Overfull/Underfull boxes: These warn about text that overflows or does not
properly fit in the margins.

To view the log, look for the ”Log” or ”Compiler” section in your editor. In Overleaf,
for instance, the log is displayed in a separate window after compilation.

Isolate the Problem

If you’re facing a complex issue and cannot locate the source of the error, try commenting
out large sections of your document. You can use the % symbol to comment out lines of
text or code temporarily:

1 %\section{Introduction}

2 %This section is commented out to isolate the problem.

Once you’ve isolated the error, you can start uncommenting sections one by one to
find the problematic code.

© 2025 Nitesh Kumar. All rights reserved. 59

Chapter 4. Introduction to LATEX

Check for Typos in Labels

Typographical errors in labels are a common cause of undefined references. Double-
check that your labels are spelled correctly and match the references exactly. LATEX is
case-sensitive, so {fig:image1} and {fig:Image1} will be treated as different labels.

Run Multiple Compilation Passes

When using cross-references or bibliographies (especially with BibTeX or BibLaTeX),
LATEX often requires multiple compilation passes to resolve all references. You may need
to run:

1. pdflatex

2. bibtex

3. pdflatex (twice more)

This ensures that all citations and references are updated correctly.

4.9.3 Warnings

While warnings do not stop compilation, they can indicate formatting problems or over-
looked issues. Some common warnings include:

Overfull or Underfull Boxes

These occur when text exceeds the margins (overfull) or does not fill the available space
properly (underfull). The message may look like this:

Overfull \hbox (5.0pt too wide) in paragraph at lines 22--23

Solution: Adjust the text, font size, or use the \sloppy command to relax the format-
ting rules.

Undefined Citations

If a citation is not defined in the bibliography, you’ll see a warning like:

LaTeX Warning: Citation ‘key’ on page 3 undefined.

Solution: Ensure that the citation key matches the reference in your .bib file.

4.9.4 Tools for Error-Free LATEX

Here are some tools and techniques that can help you avoid and fix errors in LATEX
documents:

© 2025 Nitesh Kumar. All rights reserved. 60

Chapter 4. Introduction to LATEX

Online Editors

Using online editors like Overleaf can make error handling easier since they offer real-time
error messages and logs. Overleaf, for example, highlights errors and warnings as you
type, making it easier to identify issues immediately.

lacheck and chktex

These are command-line tools designed to check LATEX documents for common errors and
potential formatting issues. lacheck checks the syntax of your document, while chktex
focuses on typographical issues.

Error handling and debugging are crucial aspects of working with LATEX. By un-
derstanding common errors, reading logs carefully, and using debugging strategies, you
can efficiently resolve issues and ensure smooth compilation. With the right tools and
techniques, error-free LATEX documents are easy to achieve.

4.10 Title Page and Its Customization in LaTeX

The title page is the first page of a LaTeX document, serving as the cover for your
work. It typically includes the title of the document, the author’s name, the institution,
the date, and sometimes additional information like the course name or the supervisor’s
name. Customizing the title page can help create a professional and polished look for
your document.

4.10.1 Basic Title Page

To create a basic title page in LaTeX, you can use the \title, \author, and \date
commands, followed by the \maketitle command. Here’s a simple example:

1 \documentclass{article}

2

3 \title{The Title of Your Document}

4 \author{Your Name}

5 \date{\ today} % Automatically inserts today ’s date

6

7 \begin{document}

8

9 \maketitle % Generates the title page

10

11 \end{document}

4.10.2 Customizing the Title Page

• Changing Fonts and Sizes: You can customize the font size and style of the
title, author, and date by using font commands. For example:

1 \title{\huge \textbf{The Title of Your Document }}

2 \author {\ Large Your Name}

3

© 2025 Nitesh Kumar. All rights reserved. 61

Chapter 4. Introduction to LATEX

• Adding a Logo: If you want to include a logo (e.g., your institution’s logo), you
can use the graphicx package:

1 \usepackage{graphicx}

2

3 \title{\ includegraphics[width =0.5\ textwidth]{logo.png }\\[1 em]

\Huge \textbf{The Title of Your Document }}

4

• Customizing Layout: To further customize the layout of the title page, you can
create your own title page using the titlepage environment. This allows more
flexibility in positioning elements:

1 \begin{titlepage}

2 \centering

3 \vspace *{2cm} % Adds vertical space

4 {\Huge \textbf{The Title of Your Document }}\\[1.5 cm]

5 {\Large Your Name }\\

6 {\large Institution Name }\\

7 {\large \today }\\[2 cm]

8 \includegraphics[width =0.3\ textwidth]{logo.png }\\[1 cm]

9 {\large Course Name }\\

10 {\large Supervisor Name}

11 \vfill

12 \end{titlepage}

13

• Using Packages: You can also explore packages like titling or fancyhdr for
more advanced customization of the title page and headers/footers.

4.10.3 Example of a Customized Title Page

Here’s a complete example with a customized title page:

1 \documentclass{article}

2 \usepackage{graphicx}

3

4 \title{\huge \textbf{The Title of Your Document }}

5 \author {\ Large Your Name}

6 \date{\ today}

7

8 \begin{document}

9

10 \begin{titlepage}

11 \centering

12 \vspace *{2cm}

13 \includegraphics[width =0.3\ textwidth]{logo.png }\\[1.5 cm]

14 {\Huge \textbf{The Title of Your Document }}\\[1.5 cm]

15 {\Large Your Name }\\[0.5 cm]

16 {\large Institution Name }\\[1.5 cm]

17 {\large \today }\\[2 cm]

18 {\large Course Name }\\

© 2025 Nitesh Kumar. All rights reserved. 62

Chapter 4. Introduction to LATEX

19 {\large Supervisor Name}

20 \vfill

21 \end{titlepage}

22

23 \end{document}

Customizing the title page in LaTeX is straightforward, allowing you to create a
visually appealing introduction to your document. With simple commands and environ-
ments, you can adjust the layout, include graphics, and modify text styles to match your
preferences or institutional requirements.

Further Resources

• Overleaf LATEX Documentation: https://www.overleaf.com/learn/latex/Main_
Page

• CTAN (Comprehensive TeX Archive Network): https://ctan.org/

© 2025 Nitesh Kumar. All rights reserved. 63

https://www.overleaf.com/learn/latex/Main_Page
https://www.overleaf.com/learn/latex/Main_Page
https://ctan.org/

Chapter 4. Introduction to LATEX

Exercise

Category 1: Easy (Conceptual and Memory-Based)

1. What is LATEX, and how does it differ fromWYSIWYG editors like Microsoft Word?

2. List three key features of LATEX that make it popular for academic document prepa-
ration.

3. What is the purpose of the preamble in a LATEX document?

4. Describe the function of the following commands in LATEX: \documentclass, \usepackage,
and \maketitle.

5. How can you include mathematical equations in a LATEX document? Provide an
example of an inline equation.

6. What are the differences between ordered and unordered lists in LATEX? Write a
simple example for each.

7. Why is the graphicx package used in LATEX documents?

8. What are the basic components of a title page in LATEX?

9. Explain the difference between \section, \subsection, and \paragraph in struc-
turing a LATEX document.

10. What is the advantage of using \label and \ref commands for cross-referencing
in LATEX?

Category 2: Mid-Level (Understanding-Based)

1. Write a simple LATEX document that includes a title page with a title, author, date,
and a centered image.

2. Describe how the align environment is used for complex equations in LATEX. Pro-
vide an example.

3. How can you customize the margins of a LATEX document? Write the command to
set all margins to 1 inch.

4. Create a simple table using the tabular environment with three columns: Name,
Age, and Country.

5. Explain the difference between \textbf, \textit, and \underline. Write an ex-
ample showing their usage.

6. How can you handle errors like ”undefined references” in a LATEX document? Sug-
gest debugging strategies.

7. Write a LATEX code snippet to display the equation E = mc2 as a standalone
equation.

© 2025 Nitesh Kumar. All rights reserved. 64

Chapter 4. Introduction to LATEX

8. How can you include a bibliography in a LATEX document? Provide the basic steps.

9. Explain how the xcolor package is used to change the color of text in LATEX. Write
an example to display text in red.

10. How can you dynamically create numbered references for figures and tables in
LATEX? Write a small example showing a labeled figure.

Category 3: Application-Based

1. Write a LATEX document to include a centered image, a table, and a displayed
equation.

2. Create a LATEX document for a two-column article layout with separate sections for
Introduction and Conclusion.

3. Write a LATEX document with cross-references to figures, tables, and sections.

4. Insert and reference a figure in a LATEX document. Provide the corresponding LATEX
code.

5. Write a LATEX code snippet for creating a custom title page that includes a title,
author name, date, course, and institution name.

6. Write a LATEX document to demonstrate the use of inline, displayed, and complex
equations (using the amsmath package).

7. Create a LATEX document to manage multiple sections, each containing a figure,
table, and equation.

8. Write a LATEX document to generate a bibliography using BibTeX with at least two
references.

9. Demonstrate how to use the booktabs package for creating professional-looking
tables in LATEX.

10. Write a LATEX document with a custom page layout, including specific margin set-
tings and page orientation.

© 2025 Nitesh Kumar. All rights reserved. 65

Chapter 4. Introduction to LATEX

© 2025 Nitesh Kumar. All rights reserved. 66

Chapter 5

Finding Roots of an Equation

In this chapter, we will explore three fundamental numerical methods for finding roots
of equations: the Bisection Method, the Secant Method, and Newton-Raphson Method.
Each method will be introduced with theoretical concepts, illustrated with examples, and
followed by practice questions to strengthen your understanding.

Introduction to Root-Finding Methods

Root-finding algorithms are essential in numerical analysis for solving equations of the
form f(x) = 0. We will discuss three methods here:

• Bisection Method - a simple and reliable method.

• Secant Method - a faster approach that avoids calculating derivatives.

• Newton-Raphson Method - a powerful method using derivatives for rapid con-
vergence.

5.1 Bisection Method

The Bisection Method is a numerical approach to find a root of a continuous function
f(x) within a specified interval. It is particularly useful when the function changes sign
over an interval, indicating the presence of a root.

5.1.1 Method Explanation

The Bisection Method works as follows:

1. Choose an interval [a, b] such that f(a) · f(b) < 0. This guarantees that there is at
least one root in [a, b].

2. Calculate the midpoint m = a+b
2
.

3. Evaluate f(m). If f(m) = 0, then m is the root. Otherwise, update the interval as
follows:

• If f(a) · f(m) < 0, set b = m.

67

Chapter 5. Finding Roots of an Equation

• If f(b) · f(m) < 0, set a = m.

4. Repeat the steps until the interval [a, b] is sufficiently small, or until the midpoint
m is accurate to the desired precision.

5.1.2 Example: Finding the Root of f(x) = sinx - x cosx

Let’s find the root of the function f(x) = sinx − x cosx in the interval [4, 5] using the
Bisection Method. We’ll proceed step-by-step, calculating each midpoint and evaluating
the function to see if we’ve narrowed down the root.

Initial Setup

f(x) = sinx− x cosx

Evaluating f(x) at the endpoints:

f(4) = sin(4)− 4 cos(4) ≈ 1.8577719881465196

f(5) = sin(5)− 5 cos(5) ≈ −2.3772352019792695

Since f(4) · f(5) < 0, there is a root between x = 4 and x = 5.

Iterative Steps

The following table shows the iterative steps for the Bisection Method applied to f(x) =
sinx− x cosx in the interval [4, 5]:

Iteration a b m = a+b
2

f(a) f(b) f(a) · f(b) Interval Update
1 4 5 4.5 1.85777 -2.37724 -4.42 (< 0) [4,5]
2 4 4.5 4.25 1.85777 -0.02895 -0.05 (< 0) [4,4.5]
3 4.25 4.5 4.375 1.00088 -0.02895 -0.03 (< 0) [4.25,4.5]
4 4.375 4.5 4.4375 0.50461 -0.02895 -0.01 (< 0) [4.375,4.5]
5 4.4375 4.5 4.46875 0.24206 -0.02895 -0.01 (< 0) [4.4375,4.5]
6 4.46875 4.5 4.484375 0.10756 -0.02895 -0.00 (< 0) [4.46875,4.5]
7 4.484375 4.5 4.4921875 0.03955 -0.02895 -0.00 (< 0) [4.484375,4.5]
8 4.4921875 4.5 4.49609375 0.00536 -0.02895 -0.00 (< 0) [4.4921875,4.5]
9 4.4921875 4.49609375 4.494140625 0.00536 -0.01178 -0.00 (< 0) [4.4921875,4.49609375]
10 4.4921875 4.494140625 4.4931640625 0.00536 -0.00321 -0.00 (< 0) [4.4921875,4.494140625]
11 4.4931640625 4.494140625 4.49365234375 0.00108 -0.00321 -0.00 (< 0) [4.4931640625,4.494140625]

Table 5.1: Bisection Method Iterations for f(x) = sin x− x cosx in the interval [4, 5]

Final Answer

After continuing the iterations, we find that the root of f(x) = sin x − x cosx to the
desired precision in the interval [4, 5] is approximately:

x ≈ 4.49365234375

5.1.3 Error Estimation in the Bisection Method

In the Bisection Method, we iteratively narrow down the interval [a, b] that contains the
root. With each iteration, the interval’s length is halved, allowing us to estimate the
error and the convergence rate.

© 2025 Nitesh Kumar. All rights reserved. 68

Chapter 5. Finding Roots of an Equation

Absolute Error Bound

If we define the root as r, then after n iterations, the interval [an, bn] contains r. The
error in the approximation mn = an+bn

2
, which is the midpoint of the interval, is bounded

by half the interval length:

|mn − r| ≤ bn − an
2

=
b− a

2n

where [a, b] is the initial interval.
As n increases, the interval [an, bn] becomes smaller, leading to a smaller error bound.

This error bound tells us how close our approximation mn is to the actual root r.

Number of Iterations for Desired Accuracy

To achieve a specific accuracy ϵ, we can calculate the required number of iterations N as
follows:

N ≥ log2

(
b− a

ϵ

)
This formula allows us to determine the minimum number of iterations needed to ensure
that our approximation is within a specified tolerance ϵ from the true root.

Convergence Rate

The Bisection Method has a convergence rate of O(2−n), which means the error decreases
by approximately half with each iteration. This linear convergence is slower compared to
other methods like the Newton-Raphson Method, which has quadratic convergence, but
the Bisection Method is more robust and guarantees convergence as long as the initial
interval contains a root.

Example of Error Estimation

Suppose we start with an interval [4, 5] and want to find the root of f(x) = sin x−x cosx
to within ϵ = 0.001. Using the formula above, we can estimate the number of iterations
needed:

N ≥ log2

(
5− 4

0.001

)
= log2(1000) ≈ 10

Therefore, at least 10 iterations are required to ensure that the error in our approximation
is less than 0.001.

This error estimation helps us plan the number of iterations in advance and gives con-
fidence that our final approximation is close to the true root within the desired accuracy.

5.1.4 Practice Questions

1. Use the Bisection Method to find the root of f(x) = x2 − 4 on the interval [0, 3] to
three decimal places.

2. Apply the Bisection Method to find the root of f(x) = cos x− x on [0, 1].

© 2025 Nitesh Kumar. All rights reserved. 69

Chapter 5. Finding Roots of an Equation

5.2 Secant Method

The Secant method is a numerical technique used to find the root of a function f(x)
by using a secant line to approximate the function near the root. Unlike the Bisection
method, the two initial points for the Secant method do not need to lie on opposite sides
of the root, but they must be sufficiently close to it. However, choosing points on opposite
sides of the root often improves the stability of the method.

The Secant method uses two initial points, x1 and x2, and approximates the function
by a straight line passing through these two points. The root is then estimated as the
x-intercept of this secant line. The equation of the secant line passing through the points
(x1, f(x1)) and (x2, f(x2)) is given by:

y − f(x2) =
f(x2)− f(x1)

x2 − x1

(x− x2)

Setting y = 0 to find the x-intercept (the approximation of the root), we get:

0− f(x2) =
f(x2)− f(x1)

x2 − x1

(x3 − x2)

Solving for x3, the next approximation of the root is:

x3 = x2 − f(x2)
x2 − x1

f(x2)− f(x1)

This formula is iterated with the newly found point x3 replacing x1, and x2 replacing
x3 in subsequent steps. The process is repeated until the values of xn converge to a root
with the desired level of accuracy.

5.2.1 Method Explanation

Given two points x0 and x1 close to the root, the secant method approximates the root
using:

xn+1 = xn − f(xn) ·
xn − xn−1

f(xn)− f(xn−1)

4 4.2 4.4 4.6 4.8 5 5.2

−2.5

1

x0

x2

x1 x

f(x)

Figure 5.1: Secant method on f(x) = sin(x) - xcos(x).

© 2025 Nitesh Kumar. All rights reserved. 70

Chapter 5. Finding Roots of an Equation

5.2.2 Example: Solving f(x) = sinx− xcosx = 0 for x ∈ [4, 5]

Let’s apply the Secant Method to find the root of f(x) = sin x−x cosx with x in radians
and initial guesses x0 = 4.0 and x1 = 5.0. We will continue the iterations until the
function value is close to zero, recording the process in a table.

f(x) = sinx− x cosx

Detailed Iterations in Table

Table 5.2: Solving f(x) = sinx− x cosx using Secant method.
Iteration xn xn−1 f(xn) xn+1 = xn − f(xn)

xn−xn−1

f(xn)−f(xn−1)

0 4.0 - f(4.0) = sin(4.0)− 4.0 cos(4.0) ≈ −2.613 -
1 5.0 4.0 f(5.0) = sin(5.0)− 5.0 cos(5.0) ≈ 3.418 x2 = 4.0− (−2.613) 4.0−5.0

−2.613−3.418
≈ 4.433

2 4.433 5.0 f(4.433) ≈ −0.432 x3 = 4.433− (−0.432) 4.433−5.0
−0.432−3.418

≈ 4.490

3 4.490 4.433 f(4.490) ≈ −0.030 x4 = 4.490− (−0.030) 4.490−4.433
−0.030+0.432

≈ 4.494

4 4.494 4.490 f(4.494) ≈ 0.0005 x5 = 4.494− 0.0005 4.494−4.490
0.0005+0.030

≈ 4.4934

5 4.4934 4.494 f(4.4934) ≈ 0 Converged to root

Explanation of Iterations

In this table:
- Iteration 0: We start with initial guesses x0 = 4.0 and x1 = 5.0, calculating f(x0) ≈
−2.613 and f(x1) ≈ 3.418.
- Iteration 1: Using the Secant formula, we find x2 ≈ 4.433.
- Iteration 2 to 4: We continue the iterations, refining our approximations.
- Iteration 5: We reach x ≈ 4.4934, where f(x) ≈ 0, indicating the approximate root is
x ≈ 4.4934.

The Secant Method has successfully approximated the root of f(x) = sin x − x cosx
in the interval [4, 5] to be around x ≈ 4.4934. This iterative approach converges quickly
and avoids the need for derivatives, making it a practical alternative to other root-finding
methods.

5.2.3 Practice Questions

1. Find the root of f(x) = x2 − 2x + 1 using the Secant Method with initial guesses
x0 = 1.5 and x1 = 2.

2. Use the Secant Method to approximate the root of f(x) = sin x − 0.5 with initial
guesses x0 = 0.5 and x1 = 1.

5.3 Newton-Raphson Method

The Newton-Raphson Method uses the derivative to find a root of a function.

© 2025 Nitesh Kumar. All rights reserved. 71

Chapter 5. Finding Roots of an Equation

5.3.1 Method Explanation

Starting with an initial guess x0, update x using:

xn+1 = xn −
f(xn)

f ′(xn)

5.3.2 Example

Find the root of f(x) = x3 − 3x+ 2 using Newton-Raphson with x0 = 0.5.

5.3.3 Practice Questions

1. Use the Newton-Raphson Method to find the root of f(x) = x2 − 4x + 3 starting
with x0 = 2.5.

2. Find the root of f(x) = tan(x)− x using an initial guess of x0 = 4.

5.4 Summary and Comparison of Methods

In this chapter, we explored three methods of finding roots, each with unique advantages
and limitations. Practice and apply these methods to determine which is best suited for
a given problem.

© 2025 Nitesh Kumar. All rights reserved. 72

Chapter 6

Interpolation

6.1 Lagrange Interpolation Formula

The Lagrange Interpolation Formula is used to find the polynomial P (x) that passes
through a given set of points (x0, y0), (x1, y1), . . . , (xn, yn). It is given by:

P (x) =
n∑

i=0

yi · Li(x),

where Li(x) is the Lagrange basis polynomial:

Li(x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

.

Example

Problem: Find the interpolating polynomial using the points (1, 1), (2, 4), (3, 9), and
evaluate P (2.5).

Step 1: Write the formula for P (x)

For three points, the polynomial is:

P (x) = y0 · L0(x) + y1 · L1(x) + y2 · L2(x).

Step 2: Compute L0(x), L1(x), and L2(x)

L0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 2)(x− 3)

(1− 2)(1− 3)
=

(x− 2)(x− 3)

2
,

L1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
=

(x− 1)(x− 3)

(2− 1)(2− 3)
= −(x− 1)(x− 3)

1
,

L2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x− 1)(x− 2)

(3− 1)(3− 2)
=

(x− 1)(x− 2)

2
.

73

Chapter 6. Interpolation

Step 3: Substitute y0 = 1, y1 = 4, y2 = 9 into P (x)

P (x) = 1 · (x− 2)(x− 3)

2
+ 4 ·

(
−(x− 1)(x− 3)

1

)
+ 9 · (x− 1)(x− 2)

2
.

Simplifying:

P (x) =
(x− 2)(x− 3)

2
− 4(x− 1)(x− 3) +

9(x− 1)(x− 2)

2
.

Step 4: Evaluate P (2.5)

Substitute x = 2.5:

L0(2.5) =
(2.5− 2)(2.5− 3)

2
=

(0.5)(−0.5)

2
= −0.125,

L1(2.5) = −(2.5− 1)(2.5− 3)

1
= −(1.5)(−0.5) = 0.75,

L2(2.5) =
(2.5− 1)(2.5− 2)

2
=

(1.5)(0.5)

2
= 0.375.

Now compute P (2.5):

P (2.5) = 1(−0.125) + 4(0.75) + 9(0.375).

P (2.5) = −0.125 + 3 + 3.375 = 6.25.

Final Answer

The interpolated polynomial is:

P (x) =
(x− 2)(x− 3)

2
− 4(x− 1)(x− 3) +

9(x− 1)(x− 2)

2
.

At x = 2.5, P (2.5) = 6.25.

© 2025 Nitesh Kumar. All rights reserved. 74

	Introduction to FORTRAN 90 on Linux
	Getting Started with Linux
	Basic Linux Commands
	File System Hierarchy

	Historical Development of FORTRAN
	Evolution of FORTRAN

	Setting Up the FORTRAN Environment on Linux
	Installing GNU Fortran Compiler (gfortran)

	Introduction to Fortran
	Basic Syntax
	Variables and Data Types
	Control Structures
	Arrays
	Subroutines and Functions
	File Handling

	Advanced Topics
	Example Programs
	Basic syntax
	Variables and data types
	Control structures
	Arrays
	Functions
	Subroutines
	File handling

	Linking external libraries
	Steps to Link to External Libraries
	Example: Solving a Linear System using LAPACK
	Fortran Code
	Compilation and Linking
	Running the Program

	Matrix Multiplication of size 2x2
	Flowchart
	Code

	Conclusion

	Introduction to C++
	Basic Syntax
	Variables and Data Types
	Control Structures
	Functions
	Arrays and Vectors
	Object-Oriented Programming (OOP)
	File Handling
	Advanced Topics
	Example Programs
	Basic syntax
	Variables and data types
	Control structures
	Arrays and vectors
	Functions
	File handling

	Pointers in C++
	Examples

	Arrays in C++
	Examples

	Pointers and Arrays
	Examples

	Dynamic list Example
	Explanation

	Significance of Using Pointers

	Introduction to Gnuplot
	Overview
	Getting Started with Gnuplot
	Plotting Mathematical Functions
	Plotting Data from Files
	Customizing Plots
	Examples

	Introduction to LaTeX
	Introduction to LaTeX
	Getting Started with LaTeX
	Installing LaTeX
	First LaTeX Document

	The Preamble and Body of a LaTeX Document
	The Preamble
	The Body

	Document Structure
	Basic Structure
	Lists

	Mathematical Typesetting
	Inline Math
	Displayed Equations
	Complex Equations

	Figures and Tables
	Inserting Figures
	Tables

	Cross-referencing and Bibliography
	Cross-referencing
	Bibliography

	Customizing LaTeX Documents
	Page Layout
	Font and Style
	Color and Highlighting

	Error Handling and Debugging
	Common LaTeX Errors
	Debugging Tips
	Warnings
	Tools for Error-Free LaTeX

	Title Page and Its Customization in LaTeX
	Basic Title Page
	Customizing the Title Page
	Example of a Customized Title Page

	Finding Roots of an Equation
	Bisection Method
	Method Explanation
	Example: Finding the Root of f(x) = sinx - x cosx
	Error Estimation in the Bisection Method
	Practice Questions

	Secant Method
	Method Explanation
	Example: Solving f(x) = x - xcosx = 0 for x [4, 5]
	Practice Questions

	Newton-Raphson Method
	Method Explanation
	Example
	Practice Questions

	Summary and Comparison of Methods

	Interpolation
	Lagrange Interpolation Formula

